Building on our highly interdisciplinary track-record in soft materials, we will reimagine the use and reuse of materials themselves - from taonga 3D printed from traditional Māori materials, to creating a form of artificial cells that self-regulate and reconfigure for different functions.
Our research will support New Zealand's goal for 'net zero' carbon emissions by 2050. We will explore new materials that will catch CO2 from air and waste streams. We'll also design new catalysts that will turn CO2 into green fuels.
Read more about Towards Zero Carbon - Catalytic Architectures
The data centres worldwide that support our digital lifestyles use almost ten times as much electricity per year as the whole of NZ. We will develop computing materials that process information more like a brain, and that use far less energy than conventional electronics.
Read more about Towards Low Energy Tech - Hardware for Future Computing
Crosscutting these Research Programmes sits our Mātauranga Māori Research Programme. This programme provides a platform for the other research programmes, intersecting with the theme of sustainability.
Read more about Sustainable Resource Use - Mātauranga Māori Research Programme
September 1, 2023
Dr Geoffrey Weal and colleagues are using computing and AI to discover materials increasing solar ce...
August 31, 2023
KiwiNet announced our Commercialisation and Industry Engagement Manager Kevin Sheehy has been shortl...
February 20, 2019
The challenges facing New Zealand and the world today - clean water, renewable energy, climate change - will be solved by tomorrow's scientists and engineers - sitting in our classrooms right now, ready to be inspired. They need new materials and new technology based on those materials that haven't been discovered yet.
That's what the MacDiarmid Institute does. We are New Zealand's best scientists, engineers and educators, unified for a common goal: to make, understand, and use new materials to improve people's lives.
May 8, 2019
Associate Professor Nicola Gaston: Can you imagine a future where electricity is practically free, where there's clean water available for everyone and a simple blood test taken at home can help diagnose some diseases?
The technology that can make each of those things possible is based on materials science. Materials are all around us; this coffee cup, this table, even this sugar I might put in the coffee. When we make things really small, as we do in nanotechnology, we create a material that has most of its substance at the surface. With sugar, that means it dissolves quickly. But in general what it means is that we can control the properties of that material with great precision. So we can take a material, any material - it could be a metal or it could be plastic - and we can play with the surface and give it new abilities. For example, we could make it anti-bacterial or we could make it absorb more light.
The MacDiarmid Institute is a network of New Zealand's best materials scientists. Materials science is the basis of all high-tech manufacturing, including sustainable environmental innovations such as new solar cells or carbon capture technologies for climate change mitigation. We work with existing industries and we also spinout new companies. In the past 15 years we have spun out 16 new companies.
Dr Ray Thomson: One of the really exciting things that the Investigators at MacDiarmid are working on is across this whole climate change area. Sequestering carbon dioxide, improving the efficiency of photovoltaic cells through to really advanced battery storage.
Associate Professor Nicola Gaston: If we want that future, a materially sustainable future, where everyone around the world can have clean water, personalised medicine, free electricity, we need materials technologies. In the MacDiarmid Institute we bring materials scientists together and we partner with industry to create intellectual property, jobs and wealth for New Zealand.
Event
August 31, 2023 - August 31, 2023
Event
August 21, 2023 - August 21, 2023
We are a network of committed biologists, chemists, physicists and engineers who collaborate to develop innovations that will both solve big problems and boost the New Zealand economy.
Our research is creating new technologies to aid the transition to a more sustainable way of life and make our world a better place.
We have ongoing partnerships with community groups, museums and other organisations to help us take science out of the lab to make it accessible, exciting and inspiring.
Devese, S., Pot, C., Natali, F., Granville, S., Plank, N., Ruck, B. J., Joe Trodahl, H. & Holmes-Hewett, W. Non-volatile memory storage in tri-layer structures using the intrinsically ferromagnetic semiconductors GdN and DyN. Nano Express 3, 045007 (2022). DOI 10.1088/2632-959X/acaf92
Idrus-Saidi, S. A., Tang, J., Lambie, S., Han, J., Mayyas, M., Ghasemian, M. B., Allioux, F.-M., Cai, S., Koshy, P., Mostaghimi, P., Steenbergen, K. G., Barnard, A. S., Daeneke, T., Gaston, N. & Kalantar-Zadeh, K. Liquid metal synthesis solvents for metallic crystals. Science 378, 1118–1124 (2022). DOI: 10.1126/science.abm2731
Rehan, M., Yeo, A. G., Yousuf, M. U. & Avci, E. Anchoring Mechanism for Capsule Endoscope: Mechanical Design, Fabrication and Experimental Evaluation. Micromachines 13, 2045 (2022). DOI: 10.3390/mi13122045
Sheard, W., Park, K. W. & Leitao, E. M. Polysulfides as Sorbents in Support of Sustainable Recycling. ACS Sustainable Chemistry and Engineering 11, 3557–3567 (2023). DOI: 10.1021/acssuschemeng.2c07386
Olding, A., Ho, C. C., Lucas, N. T., Canty, A. J. & Bissember, A. C. Pretransmetalation Intermediates in Suzuki–Miyaura C–C and Carbonylative Cross-Couplings: Synthesis and Structural Authentication of Aryl- and Aroylnickel(II) Boronates. ACS Catal. 13, 3153–3157 (2023). DOI: 10.1021/acs.inorgchem.3c00198
Associate Investigator
Tomorrow's Electronic Devices, Towards Low Energy Tech - Hardware for Future Computing
The physics of the solid state offers an amazing variety of quantum phenomena. Amongst the most exotic is superconductivity - the ability of material to conduct electricity without resistance.
Principal Investigator
Tomorrow's Electronic Devices, Towards Low Energy Tech - Hardware for Future Computing
To make it possible that we have better and better electronic devices is what motivates my work.