Building on our highly interdisciplinary track-record in soft materials, we will reimagine the use and reuse of materials themselves - from taonga 3D printed from traditional Māori materials, to creating a form of artificial cells that self-regulate and reconfigure for different functions.
Our research will support New Zealand's goal for 'net zero' carbon emissions by 2050. We will explore new materials that will catch CO2 from air and waste streams. We'll also design new catalysts that will turn CO2 into green fuels.
Read more about Towards Zero Carbon - Catalytic Architectures
The data centres worldwide that support our digital lifestyles use almost ten times as much electricity per year as the whole of NZ. We will develop computing materials that process information more like a brain, and that use far less energy than conventional electronics.
Read more about Towards Low Energy Tech - Hardware for Future Computing
Crosscutting these Research Programmes sits our Mātauranga Māori Research Programme. This programme provides a platform for the other research programmes, intersecting with the theme of sustainability.
Read more about Sustainable Resource Use - Mātauranga Māori Research Programme
August 29, 2024
AUT-based Associate Investigator, Dr Jack Chen, has today been announced as a finalist for the 2024 ...
July 9, 2024
Her day job of working to decarbonise the zinc and steel industries is a fair stretch from lambing t...
Read more about From farm to forefront of innovative science
February 20, 2019
The challenges facing New Zealand and the world today - clean water, renewable energy, climate change - will be solved by tomorrow's scientists and engineers - sitting in our classrooms right now, ready to be inspired. They need new materials and new technology based on those materials that haven't been discovered yet.
That's what the MacDiarmid Institute does. We are New Zealand's best scientists, engineers and educators, unified for a common goal: to make, understand, and use new materials to improve people's lives.
October 16, 2023
Professor Nicola Gaston: Can you imagine a future where electricity is practically free, where there's clean water available for everyone and a simple blood test taken at home can help diagnose some diseases?
The technology that can make each of those things possible is based on materials science. Materials are all around us; this coffee cup, this table, even this sugar I might put in the coffee. When we make things really small, as we do in nanotechnology, we create a material that has most of its substance at the surface. With sugar, that means it dissolves quickly. But in general what it means is that we can control the properties of that material with great precision. So we can take a material, any material - it could be a metal or it could be plastic - and we can play with the surface and give it new abilities. For example, we could make it anti-bacterial or we could make it absorb more light.
The MacDiarmid Institute is a network of New Zealand's best materials scientists. Materials science is the basis of all high-tech manufacturing, including sustainable environmental innovations such as new solar cells or carbon capture technologies for climate change mitigation. We work with existing industries and we also spinout new companies. In the past 15 years we have spun out 16 new companies.
Dr Ray Thomson: One of the really exciting things that the Investigators at MacDiarmid are working on is across this whole climate change area. Sequestering carbon dioxide, improving the efficiency of photovoltaic cells through to really advanced battery storage.
Professor Nicola Gaston: If we want that future, a materially sustainable future, where everyone around the world can have clean water, personalised medicine, free electricity, we need materials technologies. In the MacDiarmid Institute we bring materials scientists together and we partner with industry to create intellectual property, jobs and wealth for New Zealand.
We are a network of committed biologists, chemists, physicists and engineers who collaborate to develop innovations that will both solve big problems and boost the New Zealand economy.
Our research is creating new technologies to aid the transition to a more sustainable way of life and make our world a better place.
We have ongoing partnerships with community groups, museums and other organisations to help us take science out of the lab to make it accessible, exciting and inspiring.
Dong, Y., Ai, F., Sun-Waterhouse, D., Murai, K.-I., Moriga, T. & Waterhouse, G. I. N. Optical and Photocatalytic Properties of Three-Dimensionally Ordered Macroporous Ta2O5 and Ta3N5 Inverse Opals. Chemistry of Materials 35, 8281–8300 (2023). https://doi.org/10.1021/acs.chemmater.3c01903
Schuyt, J. J., Williams, G. V. M. & Chong, S. V. Long-Lived UV-Rewritable Luminescent Memory in a Fluoroperovskite Crystal. Advanced Optical Materials, 2302553 (2023). https://doi.org/10.1002/adom.202302553
Studholme, S. J., Heywood, Z. E., Mallinson, J. B., Steel, J. K., Bones, P. J., Arnold, M. D. & Brown, S. A. Computation via neuron-like spiking in percolating networks of nanoparticles. Nano Letters 23, 10594 (2023). https://doi.org/10.1021/acs.nanolett.3c03551
Chang, Z., Zhu, B., Liu, J., Dong, H., Hao, Y., Zhou, Y., Travas-Sejdic, J. & Xu, M. "Signal-on" electrochemical detection of BACE1 for early detection of Alzheimer's disease. Cell Reports Physical Science, 101632 (2023). https://doi.org/10.1016/j.xcrp.2023.101632
Stewart, G. T., Barbarich-Unasa, T. W., Enari, D., Faumuina, C., Heke, D., Henare, D., Lolohea, T., Phillips, M., Port, H., Staniland, N., Tapuni, N., Teaurere, R., Ualesi, Y., Walker, L., Devine, N. & Matapo, J. Experiences of indigenous (Māori/Pasifika) early career academics. Educational Philosophy and Theory (2023). https://doi.org/10.1080/00131857.2023.2271649
Emeritus Investigator
You want your brain to hurt, to get out of your comfort zone. You attract people when you do things like this. You respond to sparks and generate your own sparks. We do the weird stuff no-one else is doing.
Principal Investigator
Tomorrow's Electronic Devices, Towards Low Energy Tech - Hardware for Future Computing
To make it possible that we have better and better electronic devices is what motivates my work.