
MACDIARMID INSTITUTE

2019 ANNUAL REPORT

Tangata whakawhanake - to improve people's lives

MacDiarmid Institute

We are a network of leading researchers united in a common goal: to create and explore innovative, sustainable materials that will improve the lives of people in Aotearoa and around the world.

We work together and partner with industry and government to address global challenges such as renewable energy and climate change mitigation.

Introduction

From 2002 - 2019

656 PhD graduates

852 research alumni

4000+ AMN conference attendees

73 inventions patented

19 affiliated start-up companies created

The MacDiarmid Institute for Advanced Materials and Nanotechnology

MacDiarmid Institute

Introduction

Co-Directors' report—7 Chair's report—7

Out of the lab

Overview—8 Dr Pauline Harris—10 Dr Jenny Malmström—12 FLEET collaboration—14 Moiré patterns—18 Taking essential metals into a zero-carbon future—20 Fuelling NZ's future with smart catalysts—25 Building better bioelectrics—28 Researcher profiles—30 New Associate Investigators—34 The changing face of the MacDiarmid Institute—35 Awards and funding—36

Into the marketplace

Overview—42KiwiNet Awards—44An integrated research commercialisation
approach—47Affiliated start-ups—48Growing the next generation of entrepreneurs—49Bridging academia to industry—50Tech Tasters—51Engaging with Māori business—51Materials science in the new Energy sector—52Disruptive science for sustainable fertiliser—53Patents—54Spinouts —55

Into the community

Overview—56 MacDiarmid science engagement—58 Building capability at the intersection of science with mātauranga Māori—59 How can materials science offer a greener future for our planet?—60 AMN9 Conference—62 DiscoveryCamp and NanoCamp-66 DiscoveryCamp alumni-68 Nanogirl-69 Kōrero partnership with NZEI—70 Cluster Hui-70 Partnering with The Spinoff-71 Te Papa nature exhibition—72 House of Science—74 James Shaw visit—76 Mighty Small, Mighty Bright-77 MESA-77

Into the future

Overview—78 Alumni survey—80 Alumni event—81 Future Leaders Programme—81 Sustainability report—81 Business scholarship recipients—82 Government and industry internships—83 Paths to policy—83 Commercial internships—85

Into the metrics

Financials—88 At a glance—89 Board, executive, staff and students—90 Journal covers—101 Publications—102

2019

Co-Directors' report

Nicola Gaston and Justin Hodgkiss Co-Directors

A major focus for the MacDiarmid Institute in 2019 was building the proposal for our next eight years of CoRE funding. The process was both a wonderful opportunity to come together and dream about the ways in which materials science will transform New Zealand in the coming decade, as well to reflect on how far we've come since our beginnings in 2002.

We're connecting more closely with our alumni - New Zealand's future leaders. A survey of MacDiarmid PhD graduates over the past five years shows that over 70% are employed in senior technical roles, including local materials science-based startup companies. Over two thirds of our alumni remain in New Zealand. Considering that two thirds of our PhD recruits come from abroad, the Institute is doing its part to 'make New Zealand a place where talent wants to live', in the words of Sir Paul Callaghan.

Materials science is central to climate action, 2019 was a significant year – from the student climate strikes, to Greta Thunberg's powerful address at the United Nations, and the passing of the Government's Zero Carbon Act. The MacDiarmid Institute's research in renewable energy materials was highlighted at the national 'Just Transition' summit – held in Taranaki to tackle our pathway to zero carbon. Some of our technologies for climate change mitigation have also been seen by hundreds of thousands of visitors at Te Papa museum, and were the topic of our Sustainable Innovations regional lecture tour.

In this coming decade humanity needs materials science more than any decade before it. As the stories in this report will show, this year we have, once again, unified NZ materials scientists for a common goal: to make, understand, and use new materials to improve people's lives.

for ghon inde

In this coming decade humanity needs materials science like never before; more than any decade before it. This year we have, once again, unified NZ materials scientists for a common goal: to make, understand, and use new materials to improve people's lives. NICOLA GASTON AND JUSTIN HODGKISS, CO-DIRECTORS, MACDIARMID INSTITUTE

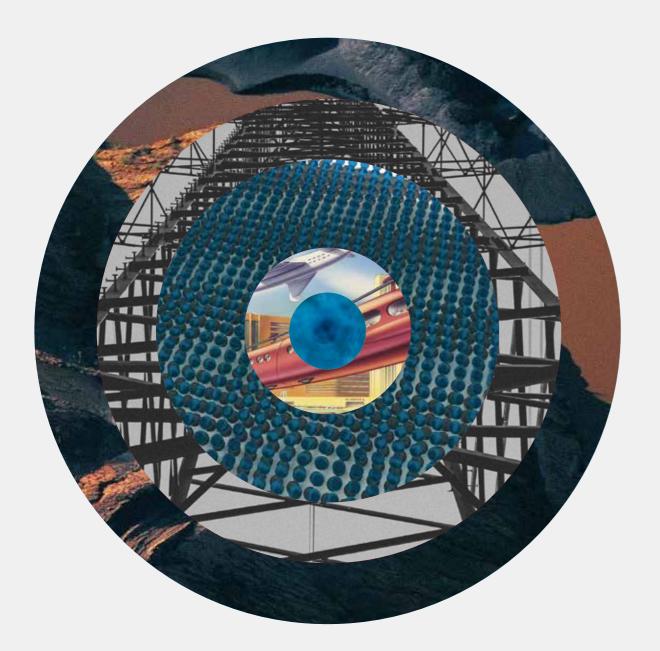
It takes time to develop genuinely effective and meaningful collaboration between multiple institutions, to grow the trust and openness that enables high achievement. The **MacDiarmid Institute** has done this in spades. PAUL ATKINS, MACDIARMID INSTITUTE BOARD CHAIR

Associate Professor Nicola Gaston, Paul Atkins and Professor Justin Hodgkiss

Chair's report

Paul Atkins Chair

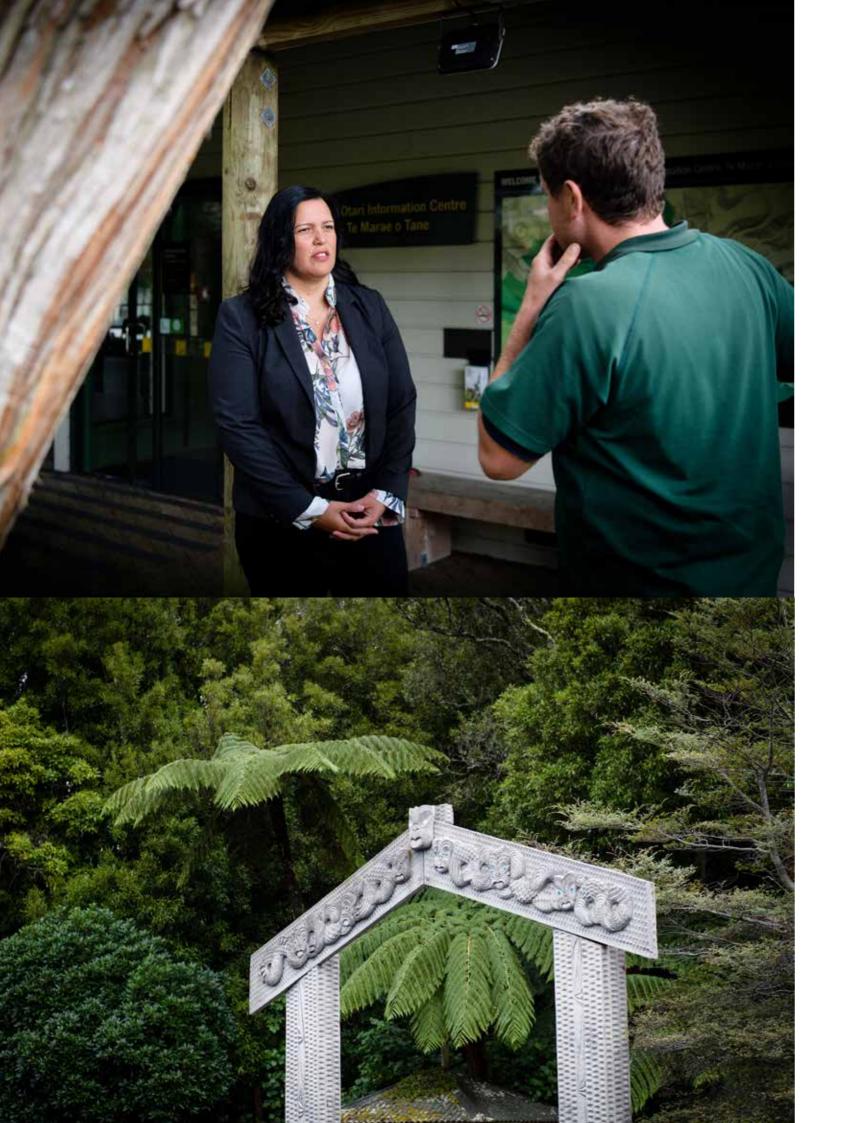
The theme for the Institute's symposium this vear - 'Haumi ē, hui ē, tāiki ē!' - sums up what the MacDiarmid Institute is all about. The expression is used to signal that a group of people is united and ready to progress the purpose of them coming together.


It takes time to develop genuinely effective and meaningful collaboration between multiple institutions, to grow the trust and openness that enables high achievement. The MacDiarmid Institute has done this in spades, and it is this unity of purpose that has enabled the Institute to achieve consistently outstanding outcomes, impact and influence over many years.

Much of the past year has been focussed on the CoRE rebid process. It has been an opportunity to reflect on our history and achievements, and consider how we apply those to the challenges of the future. The excellent science, integration of mātauranga Māori, community engagement, leadership in equity and the developing of great talent for the future, along with the success in commercialisation and industry engagement, means the Institute has all the elements important to this future.

The three themes put forward in our rebid low energy technologies, zero carbon, and zero waste - will ensure we are making a critical contribution to a sustainable future.

My sincere thanks go to everyone in the MacDiarmid Institute for the collaborative effort that has resulted in such significant and sustained achievements. My particular thanks go to the Co-Directors and Deputy Directors for their leadership and example.



1. Out of the lab.

MacDiarmid research is a collaborative effort, aiming to answer some of the most important scientific questions that matter to New Zealand and the world. But those big questions are built on the expertise of our people - committed researchers, from a diverse range of backgrounds.

Here we introduce you to our people and their work.

INTERVIEW

Dr Pauline Harris

Many know MacDiarmid Institute Principal Investigator, Dr Pauline Harris, for her work in Māori astronomy, and traditional calendar systems, but may not realise she also has a PhD in physics. What made her join the MacDiarmid Institute at this time?

"Sustainability is central for Māori and indigenous people, and to see it at the core of the work of the MacDiarmid Institute was something I wanted to be part of. There's a willingness within the Institute to really focus on the future of our planet, and for sustainability to not be just a word to be thrown around but a word to be actioned. The MacDiarmid leadership really understand that."

Dr Harris sees her role as adding to the kaupapa. "I'm trying to act as a bridge to what Māori need and want. Communities are already telling me what's worrying them - environmental issues, health issues, and the want for a more sustainable world. I want to build a picture of what we as Māori would like organisations such as MacDiarmid to focus on in their research, to enable the healing of our lands and waters. For Māori, we understand that we are the water and we are the land. This gives us a unique perspective, one that sees the need to heal the earth."

Dr Harris, who was this year appointed to a new leadership position with the Institute - Māori Science Leader on the Institute's Science Executive Committee says it was great to be asked to step into this role.

"I really appreciated being acknowledged for my experience and what I can contribute to the committee for both my knowledge as a physicist and in mātauranga Māori. The mātauranga Māori will always be a focal point for me, because I am Māori and I am passionate about seeing my people and my culture flourish. But it's also nice that the MacDiarmid Institute not only knows of my research and experience in astrophysics, but also knows that I used to work on conductive polymers. I feel seen and acknowledged for who I am."

"I feel seen and acknowledged for who I am."

to play.

"With the MacDiarmid Institute, there's a genuine willingness and desire to work with Maori and indigenous people, and to develop

Up next for Dr Harris in this role is to get talking with communities. "I want to have meaningful conversations with our whanau in different iwi, in order to determine what sort of issues are important to them - especially around environmental degradation, and issues with land, water and air. These conversations are already underway, but I want to have more, if communities are willing, and to then have a look to see what the MacDiarmid Institute can help develop, in order to contribute to solving these problems, using materials science. No one organisation will have all the answers, but everybody has a role

technologies that seriously address our environmental issues that the world is facing. By leading in this area, the MacDiarmid Institute could potentially have a huge role in opening the eyes of other organisations, about where we need to focus our efforts, and how important it is to hold meaningful discussions with the indigenous people of the land in order to build genuine relationships and collaborations based on shared values."

INTERVIEW

Dr Jenny Malmström

When Dr Jenny Malmström arrived in New Zealand fresh out of her PhD nine years ago to take up an 18-month postdoc position at the University of Auckland, a permanent position and the prospect of her own research lab seemed a long way off. Dr Malmström, who now runs her own lab at the University, says that the transition from a PhD into a permanent academic role can take time and perseverance for young researchers.

"The time between the PhD and first permanent position is a key challenge for younger researchers. I spent six years in a series of postdoc positions – firstly in the lab of Jadranka (Travas-Sejdic), and then as a MacDiarmid funded postdoc."

Dr Malmström says that a young researcher's first permanent job, when it eventually comes, can often bring its own challenges.

"It's great to have the new job, but it's common for new academics to then be given a high teaching load, and this can really make it harder to get their own research established."

Dr Malmström says for her, this was eased by some key funding awards.

"I was lucky to be given a Rutherford Discovery Fellowship plus a Marsden FastStart in 2016, just at the time I started in a permanent position. This meant my teaching load was much lighter, and I could concentrate on my own research."

The other thing that helped was the interdisciplinary nature of the MacDiarmid Institute, in which she was, by then, an Associate Investigator.

"I'm pretty multidisciplinary myself so I fitted right in; I have a bioengineering degree, and a PhD in interdisciplinary nanoscience. So finding myself in such an interdisciplinary group of researchers in the MacDiarmid has really helped me find my feet as a researcher here in NZ.

"Finding myself in such an interdisciplinary group of researchers in the MacDiarmid has really helped me find my feet as a researcher here in NZ."

> "In general, research in New Zealand is much less interdisciplinary than in other countries. Back home (in Sweden) it's the norm to span across everything."

> Dr Malmström, who has this year taken on the role of AMN10 Chair, says that she's always been open

to leadership roles. "Early on in my time in the MacDiarmid Institute, I organised the student Future Leaders' Programme. Having that behind me now as Chair of AMN10 is very reassuring." She says her time as, then, Associate Investigator representative on the MacDiarmid

Institute Science Executive also gave her an insight into how things work within the Institute.

"It certainly helped me see what was possible within organisations and how to achieve things."

Since being promoted to Principal Investigator in 2018, Dr Malmström says she now has her sights on the AMN10 conference in Rotorua in February 2021.

"Rotorua is quintessentially New Zealand. We have the strong relationship with Whakarewarewa Village, fantastic plenary speakers already confirmed, and exciting new aspects to the programme, including, for the first time, a Science in Society section. It's going to be great."

FLEET collaboration

Laying the groundwork for a low-energy computing revolution

When Microsoft chief executive, Satya Nadella, visited New Zealand in November he left his audience with some jawdropping statistics to illustrate the exponential growth in computing the world is experiencing.

By 2025, he told business and technology leaders in Auckland, 175 zettabytes of data will exist in the world (one zettabyte is a trillion gigabytes). By 2030, there would be 50 billion connected devices.

That presents one big problem for Microsoft and the other companies that increasingly host the bulk of our information in massive data centres scattered around the world - more computing power means more energy consumption.

Eight percent and rising

Computers already account for 8% of global electricity consumption, a figure set to increase rapidly given the hyperconnected nature of the world.

"The bigger part of the problem is how quickly that number is growing," says Dr Simon Granville, MacDiarmid Institute Principal Investigator and Senior Scientist in the Robinson Research Institute.

"If some new technology could stop the growth in the amount of electricity being used while allowing conventional computing to become more and more available, the benefits of this large scale computing would be achievable without bankrupting the world."

While many researchers are looking to extend computing power as Moore's Law starts to run out of steam, a trans-Tasman research collaboration is instead focused on solving the energy issue.

Formalising a rich and ongoing relationship

In 2019, the Monash Universitybased Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET) and the MacDiarmid Institute established a new partnership between the two science organisations, which share a mission to search for future low-energy electronics

Working towards a new, low energy version of the silicon based transistor

> via the development of novel materials and devices. One early partnership project aims to produce a new, low energy version of the silicon-based transistor, which has underpinned the computing revolution to date.

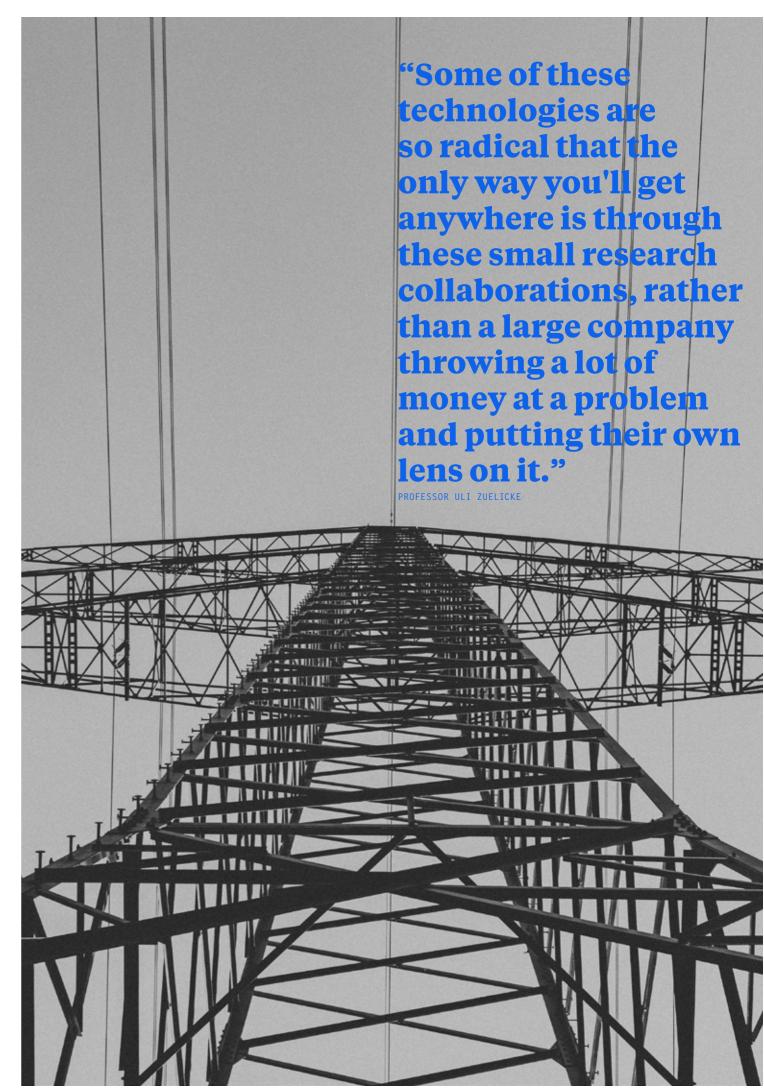
> "The transistor is a switch that can be turned on and off to allow a current to flow. It's basically how we do most electronics," explains Victoria University of Wellington Professor, Michele Governale, a Principal Investigator at the MacDiarmid Institute.

Beyond the transistor

"In order to open and close the switch and run current through it, we use power. What FLEET wants to do is substitute the building block, the transistor, with something that is low power."

The answer may lie in developing materials with electrical and thermal properties that go beyond what is possible with transistors on silicon-based chips when it comes to power efficiency and to be able to do it at room temperature, rather than relying on energy-intensive cooling systems.

The MacDiarmid Institute's team of theoretical and experimental physicists are studying the nature of these 'topological' materials, which could coat a future generation of transistors.


"They have what we call 'surface states'," says Professor Governale. "You can have transmission without energy dissipation, effectively zero resistance. We've done a lot of theoretical work on these materials and how their surface states change."

Thin magnetic coatings

"What happens when you make them smaller and smaller? Will they still have that surface state or will it be destroyed?" Dr Granville is setting out to answer that question in his lab, where he is experimenting with thin coatings of materials using a range of magnetic materials called Heusler alloys, which could optimise transistors for lowenergy operation.

"The next step is to make very simple devices in the lab (big ones you can see, rather than tiny transistors), to try and prove you can use them as a switch," he says. "At that point, you might get some idea of how much energy you could save."

Partnering with FLEET allows the MacDiarmid Institute researchers to combine their nanoscale materials expertise with the Australians' knowledge

of advanced electronics design.

conventional transistors, from the

topological materials that are the focus of the MacDiarmid Institute

researchers, to superconductivity,

which mimics the circuitry of the

quantum computing and even

"Some are so radical that the

only way you'll get anywhere is through these small research

collaborations, rather than a large company throwing a lot of money

at a problem and putting their own lens on it," says Victoria University

of Wellington Professor, Uli Zuelicke, who has been a Principal Investigator of the MacDiarmid

"It is like quantum computing. For years it was the domain of the

IBM, Google and Intel," he adds.

In October, researchers from the MacDiarmid Institute and FLEET gathered outside Trieste at the

home of the UNESCO-sponsored Abdus Salam International Centre

for Theoretical Physics (ICTP). As well as attracting some of the

top physicists from around the

world, the conference was fully

funded by the International Centre for Theoretical Physics

(ICTP), which allowed FLEET

and the MacDiarmid Institute

to contribute their own funding

"MacDiarmid is known for this connectedness internationally,'

computing power.

says Dr Granville.

towards sponsoring scientists from developing countries to attend. Such efforts to share knowledge and foster collaboration will be crucial to solving the growing sustainability issue presented by the world's insatiable demand for

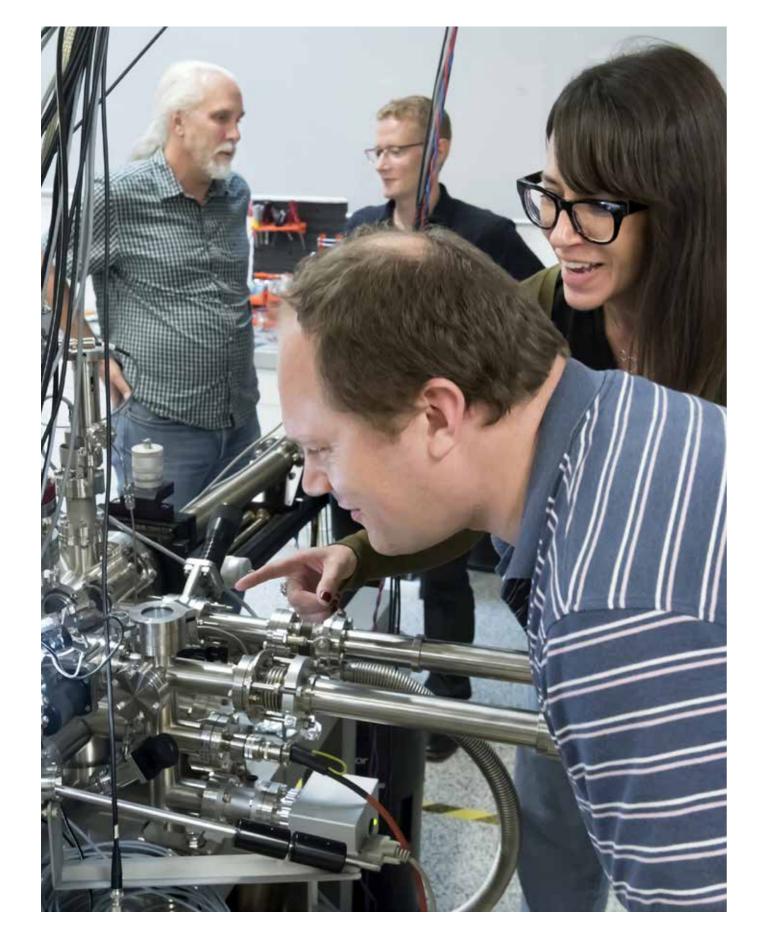
universities. Now it has moved into the realm of big companies like

Institute since 2004.

neuromorphic computing,

nervous system.

There are many technologies


in the running to replace

2019

with FLEET is a big part of that." As well as opening up opportunities for PhD and postdoctoral researchers to participate in projects and work at each others' labs, the trans-Tasman research effort is already seeing papers submitted for review to peer-reviewed journals.

"This agreement **formalises** what is already a very fruitful relationship and shared goals between the **Institute and** FLEET."

next four years."

"The Government views international collaboration as a priority and the work we are doing

FLEET DIRECTOR PROFESSOR MICHAEL FUHRER

That knowledge could inform advanced electronics design within the next decade.

Says Professor Governale: "We can probably answer some of these fundamental questions in the

Left: Dr Simon Granville with FLEET colleagues Dr Julie Karel, Professor Michael Fuhrer (FLEET Director) and Dr Mark Edmonds

Moiré patterns – not just pretty pictures

The heat coming off your laptop or mobile phone represents a huge loss of electrical energy. A loss an energy-hungry, climatechallenged world can ill afford.

Since the discovery of graphene in 2004, 2D materials have been a new frontier of physics. They are the thinnest materials possible, just a single layer of atoms in the case of graphene. This reduces the number of ways electrons can move around and allows greater control over them. Graphene is 2D carbon, arranged in a hexagonal fashion. This regular and hyperstable crystal is one of the strongest materials known and a million times more electrically conductive than copper. The almost unbelievable promise for an infinite number of electronic applications was immediately apparent.

Huge losses of electrical energy

One application relates to the device you are likely reading this on. The heat coming off your laptop or mobile phone represents a huge loss of electrical energy. A loss an energy-hungry, climatechallenged world can ill afford. Imagine if it could be reduced to near zero? Imagine a new generation of computers that did not require the high energy input and environmental cost of modern supercomputers? Thousands of scientists around the world have the bit between their teeth.

University of Canterbury Physics Professor and MacDiarmid Institute Principal Investigator, Simon Brown, has been experimenting with 2D materials for the last 15 years.

He is particularly interested in what happens when you superimpose one sheet of atoms onto another. The sheets may be composed of the same or different elements. He says that at the macro-human scale, this is like superimposing two sheets of chicken wire or garden mesh.

"Think of the interference patterns created as you rotate one sheet of chicken wire relative to the other." PROFESSOR SIMON BROWN

Professor Brown explains, "Think of the interference patterns created as you rotate one sheet of chicken wire relative to the other, or when you look through one fence or grid at another fence. These are called moiré patterns, and have become a very 'big deal' in 2D science because they can be used to engineer a whole range of exotic physical effects. At the atomic level, these interference patterns are responsible for new kinds of superconductors and materials with completely new 'fractal' electronic properties. By that I mean that these properties are the same on different size scales."

"At the atomic level, these interference patterns are responsible for new kinds of superconductors and materials."

PROFESSOR SIMON BROWN

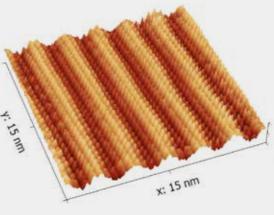
Professor Brown's PhD student, Maxime Le Ster, originally from Brittany, France, working with postdoc Tobias Maerkl, from Germany, have come up with a "simple equation" (it's actually seven interlinked equations(!)

¹* M. Le Ster, T. Maerkl, and S. A. Brown, 'Simple Analytical Model for Moire Patterns', 2D Materials 7, 011005 (2019).

but they are implemented in straightforward matlab code) describing and predicting the wavelength of these interference patterns, that is the distance between the interference fringes, and their orientations. Says Professor Brown, "This will allow more systematic prediction and analysis of the physical properties of different elements and combinations. As the angle between the layers changes, the physical properties, like conductivity, can change dramatically.

New electronic properties

"Our team has been experimenting with layers of bismuth and antimony, which are the world's worst metals in terms of conductivity, but which have electronic properties such as 'spin-orbit coupling' that lead to exotic topological effects. We evaporate the elements to coat a super-thin layer of them onto a graphite substrate.

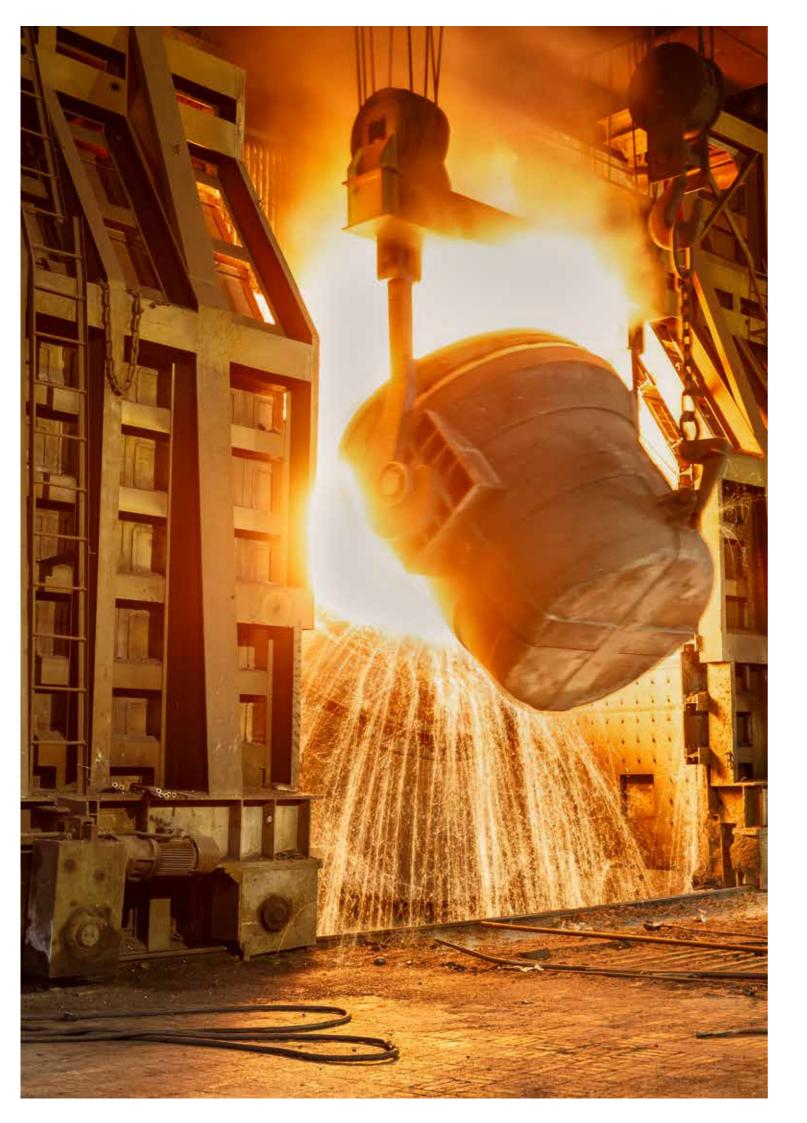

"Techniques have moved on since Andre Geim and Konstantin Novoselov, who won the 2010 Nobel Prize for Physics, produced the first single-atom carbon layer by using a bit of adhesive tape to lift graphene flakes from graphite."

The results of Professor Brown and Mr Le Ster's work are not just pretty pictures, but hope for the future.

The paper on their powerful new equation, including new experimental observations, has just been published in the journal "2D Materials."¹ 2019


A 2D form of bismuth (each small 'blob' is a bismuth atom) This image was obtained with one of the most powerful microscopes available to solidstate physicists, a scanning tunnelling microscope. The corrugation in the image is a moiré pattern caused by the superposition of two 2D materials. here bismuth and molvbdenum disulfide (MoS.) The width of the image here is about 10,000 times smaller than a

strand of hair



A 3D crystal of bismuth. The unusual shape of bismuth crystals is a consequence of their unique atomic structure and properties.

A model of a moiré pattern. When two 2D crystals (black and blue) are superposed, interference patterns occur, in turn changing the physical properties of the whole assembly.

Taking essential metals into a zero-carbon future

Steel and vanadium could be cleaned up thanks to our scientists

In today's urbanised world, steel is a ubiquitous material, used in everything from infrastructure like roads and railways, through to earthquake resilient buildings, wind turbines and electric vehicles. But making that steel comes with a significant environmental cost. In 2018, the IPCC reported that the global iron and steel industry was responsible for producing 2.6 Gt of carbon dioxide per year; that's 7% of the world's total CO₂ emissions.

A new look at an old process

"The source of all this CO₂ is the chemical reduction of iron ore," says MacDiarmid Institute Associate Investigator, Dr Chris Bumby, from Victoria University of Wellington. "Modern ironmaking is an industry based on the incremental development of a 2000-year-old process." While our materials knowledge and process control have drastically improved since the Iron Age, the underlying chemistry has stayed largely the same. In all cases, the raw material, iron oxide, is combined with a carbon-rich fuel like coal in a furnace that runs at incredibly high temperatures. The coal reacts with the oxygen from the ore producing CO₂ and a liquid metal alloy known as pig iron - 95.5% iron and 4.5% carbon. The pig iron is then converted into high-strength steel by further processing, which removes almost all of the carbon.

In 2018, the **IPCC reported** that the global iron and steel industry was responsible for producing 7% of the world's total CO, emissions.

Longbottom)

Here in New Zealand, iron is produced from titanomagnetite ironsand – an unusual form of iron ore containing low levels of titanium oxide. This requires a slightly unusual ironmaking process (colloquially known as the 'NZ Steel process'), but the fundamental chemistry still depends totally on coal as the input reactant. Regardless of the route taken, all of this input carbon adds up – on average, the production of one tonne of steel emits 1.8 tonnes of CO₂.

So, Dr Bumby and his colleagues at the Robinson Research Institute set out to find a new way to make iron, one that could eliminate the use of coal. It started back in 2014 through a collaboration with the University of Wollongong. Dr Bumby says, "The aim of that project was to use methane (CH₄) in the reduction of ironsand. But along the way, we switched to hydrogen, which took the carbon entirely out of the process." For the past 18 months, the VUW/ Wollongong team (which includes on the Australian side, Professor Brian Monaghan and Dr Ray

have been looking exclusively at hydrogen reduction of iron ores.

"The results have been fantastic," he says. "We have an entirely new, zero-carbon way to make iron, and it works especially well for New Zealand ironsand." Their one-step process produces very high purity iron – up to 99.85% iron – in under 20 minutes. Dr Bumby continues, "For context, NZ Steel's equivalent process takes about 10.5 hours, and the product contains more than 4% carbon."

NZ ironsand is unique

To make their iron, Dr Bumby uses a fluidised bed reactor. He explains, "It's effectively a tube containing ironsand sitting on top of a porous plug that allows us to push hydrogen gas through it." The unique chemical makeup of NZ ironsand has proved to be particularly helpful in this set up too. "As the reaction starts, we've found that the titanium content migrates out of the sand to form a very thin protective skin on the outside of each grain." As Dr Bumby reported in a recent paper, this stops the grains from sticking to one another, allowing for a faster reaction.

At the moment, this process has only been carried out at the laboratory scale, but that looks set to change. Dr Bumby and a trans-Tasman team of collaborators were recently awarded \$6.5 million by the MBIE Endeavour programme. Spread over five years, this funding will allow them to scale-up production of their carbon-free iron from hundreds of grams to tens of kilograms and to extend their research to include another valuable component of NZ ironsand – vanadium.

"Vanadium is an exceptionally useful metal," says Dr Bumby, "it makes steel stronger so is used in lightweight alloys. It's

also the basis of the vanadium redox battery, widely regarded as the best energy storage solution for electricity grids. And it's expensive; in the range of \$50k per tonne. So even though ironsand contains less than 1% vanadium.

"Ironsand absorbs microwave radiation really well," explains Dr Bumby. "It experiences a combination of magnetic and electronic heating that will let us reach much higher temperatures, making the whole reaction

> faster and more efficient."

"As a country, if we're serious about becoming New Zealand's relatively green a zero carbon economy, then we need to look very seriously at how we will decarbonise our domestic steel industry."

DR CHRIS BUMBY

it's still an incredibly valuable resource. We want to find cleaner, more efficient ways to extract it from the ore."

Collaborating across four institutions within the **MacDiarmid umbrella**

Leading this part of the work are two other members of the MacDiarmid Institute – Associate Professor Aaron Marshall (Associate Investigator, University of Canterbury) and Professor Jim Johnston (Emeritus Investigator, Victoria University of Wellington). They will be taking a new approach to vanadium extraction, "one that is much more careful about waste streams than today's processes," says Dr Bumby.

Another key figure in the project is MacDiarmid Institute Principal Investigator, Dr John Kennedy, from GNS, who will develop specialised microwave heaters for the new ironsand reactor.

relatively green electricity grid provides another opportunity for the team - the hydrogen gas so central to their work could be generated using renewable energy. "We're in discussions with electricity providers at the moment and we're optimistic about the economics stacking up," Dr Bumby says. "We have to

look at the big picture. Demand

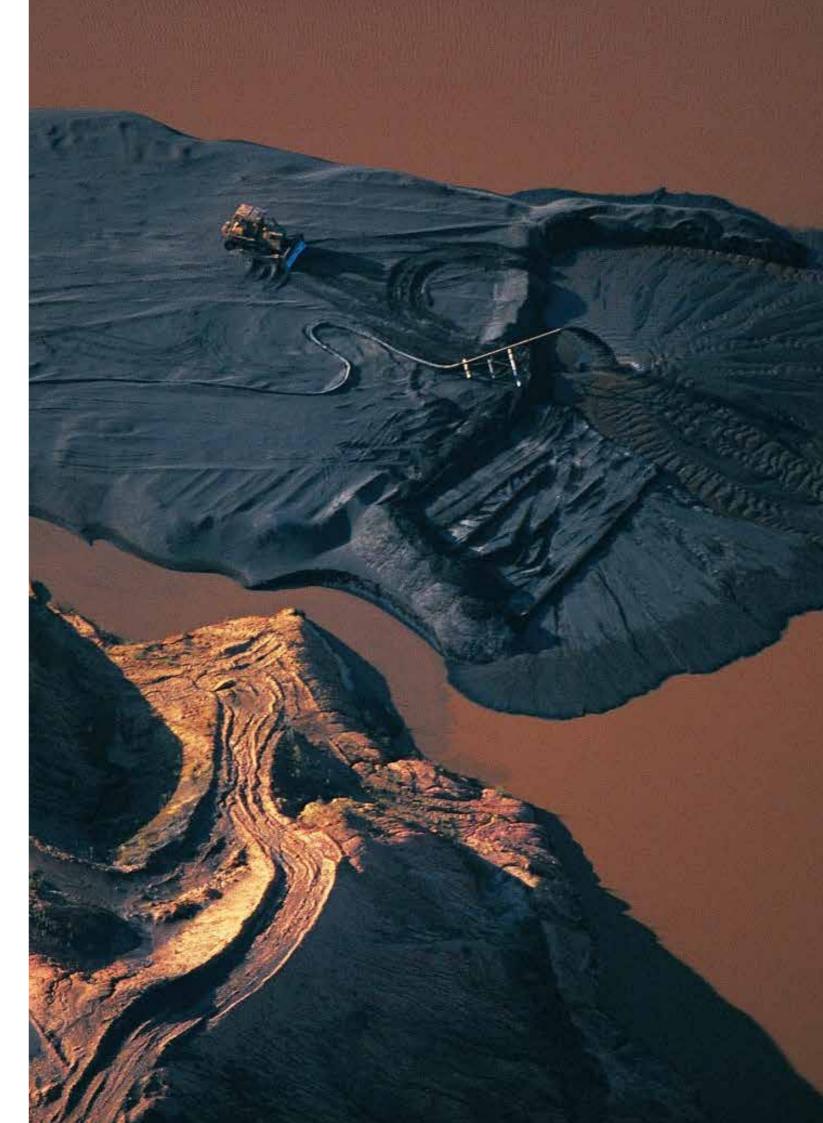
for steel is growing all the time, and importing it will simply

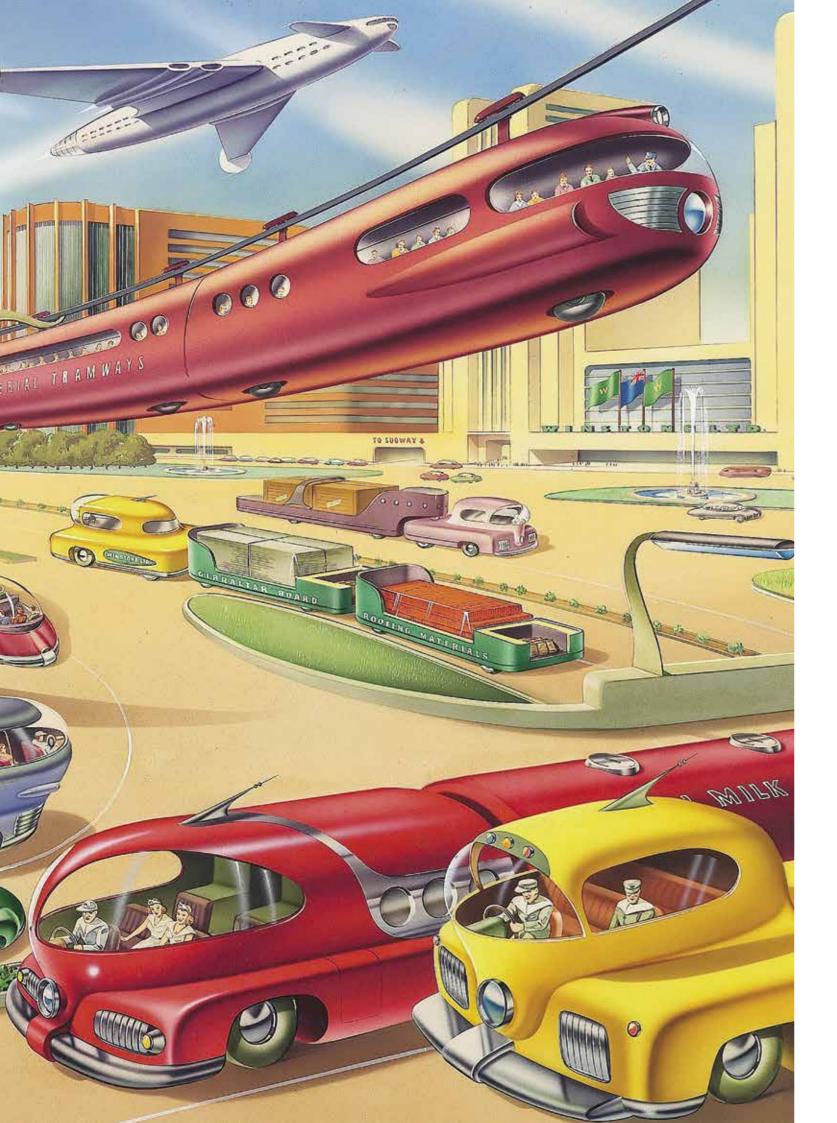
result in more CO, entering

the atmosphere from overseas

serious about becoming a zerocarbon economy, then we need to

factories. So, as a country, if we're


look very seriously at how we will


decarbonise our domestic steel

industry."

"We're in discussions with electricity providers at the moment, and we're optimistic about the economics stacking up." DR CHRIS BUMBY

Fuelling NZ's future with smart catalysts

New collaboration combines chemistry and engineering

In February of this year, a group of leading scientists and engineers from the US, Spain, Switzerland, Canada and New Zealand gathered at the University of Otago. They had been invited there by MacDiarmid Institute Principal Investigator and University of Otago Professor, Sally Brooker, to talk about future 'green' fuels. Timed to precede AMN9 (see page 62), the inaugural Otago Future Fuels (OFF) workshop featured expert tutorials, student talks and poster sessions. "It was designed primarily as a training programme for postgrads working in this area," says Professor Brooker. "Students met with, and learnt from, an amazing group of international superstars. And it also gave staff like me the opportunity to hear about their latest research." The event was such a success that Professor Brooker will run another one (OFF-2) to tie in with AMN10.

Combining chemistry and engineering

One of the speakers at OFF was another member of the MacDiarmid Institute, Associate Professor Aaron Marshall, from the University of Canterbury. He is an engineer whose research centres on materials development for a range of energy applications and like Professor Brooker, he's fascinated by catalysts. The pair met two years ago at a MacDiarmid Institute event, and after hearing about his work, Professor Brooker invited Associate Professor Marshall to give a departmental seminar.

exciting."

"Students met with, and learnt from, an amazing group of international **SUPERSTATS.**" PROFESSOR SALLY BROOKER

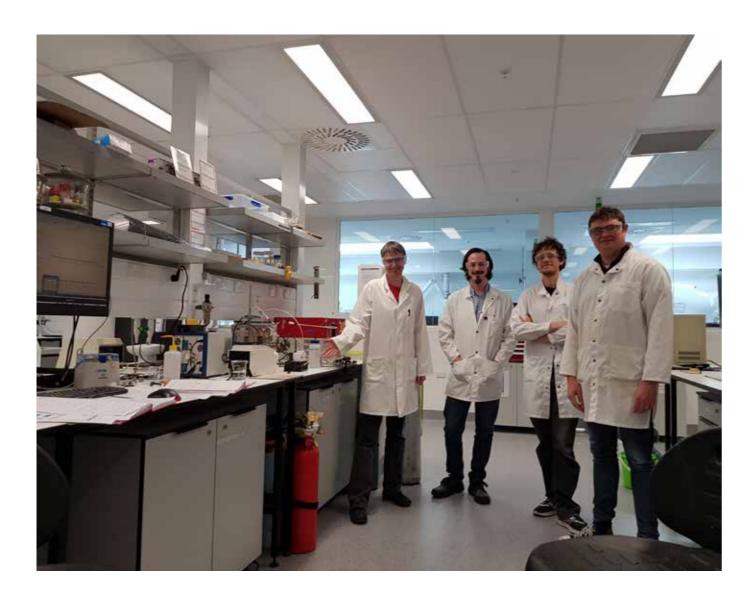
Their goal is to design a new generation of catalysts that could make tomorrow's fuels less harmful to the environment. One topic they're exploring is extracting hydrogen gas from water. As well as being an area of shared expertise, it also forms the basis of another of Professor Brooker's key collaborations - with Professor Garry Hanan at the University of Montreal. "Garry and I published a paper

"I was just so impressed," she says. "Not only by what Aaron was doing, but also his ability to communicate engineering to a chemistry audience. That visit also enabled us to have some key conversations, and cemented the idea in both our minds that if we combined our efforts, we could achieve something really

Since then, they've been busy building a collaboration that combines their skills in synthetic chemistry and materials engineering. PhD students and postgrads from each group are starting to work together, and despite having offers from overseas, Professor Brooker chose to stay in NZ for her 2019 sabbatical so she could be based at the University of Canterbury with Associate Professor Marshall.

Designing fuels less harmful to the environment

on the performance of some cobalt compounds - we made the catalysts here at Otago, and Garry tested them under photocatalytic conditions in his lab. They worked very well." Professor Brooker continues, "And now, by working with Aaron, we'll be able to explore how those compounds perform in an electrocatalytic set-up." Thanks to a Catalyst seed grant with Professor Hanan, Professor Brooker is also bringing new, hands-on knowledge to NZ. "Two of my PhD students, Abdullah and Fola, have spent extended periods in Montreal, learning how Garry's photocatalytic system works and collecting lots of data on our complexes. Rather than starting to build up a system like Garry's from scratch in Dunedin, the plan is to modify the system Aaron has to enable it to do photocatalytic testing too."

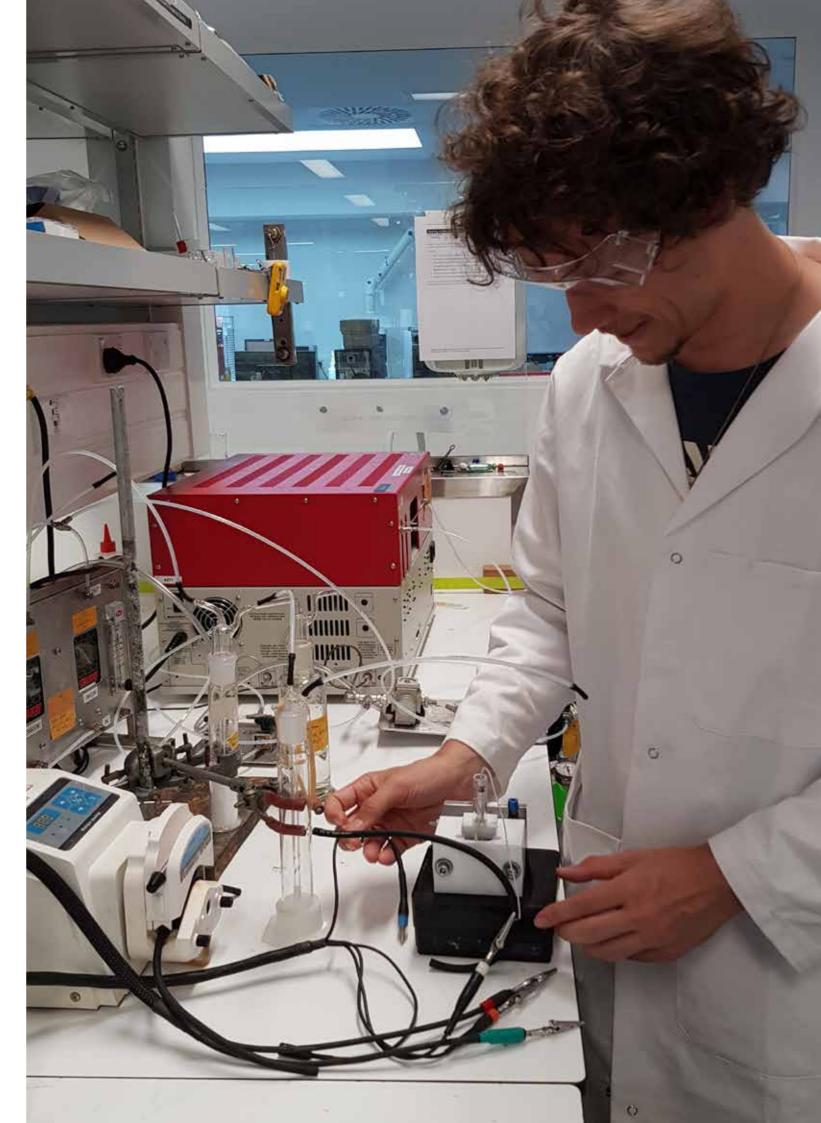

CO, to fuel

Alongside their hydrogen work, Professor Brooker and Associate Professor Marshall will also develop catalysts for the production of commodity chemicals from carbon dioxide. "I think this is where we could potentially add the greatest value," she says, "There's a selectivity challenge with CO₂ reduction because of the vast number of potential products. As molecular chemists, we can help meet that challenge and potentially find a way to turn CO₂ into a liquid fuel, like methanol."

Both hydrogen generation and CO₂ reduction are of growing importance to the NZ energy landscape. In Taranaki, Hiringa Energy is working to generate hydrogen fuel for the heavy transport sector using wind power. And the nearby Methanex plant generates 2.4 million tonnes of methanol a year. So, supported

MacDiarmid Institut

Annual Repo


"As molecular chemists, we can help meet that challenge and potentially find a way to turn CO₂ into a liquid fuel, like methanol."

PROFESSOR SALLY BROOKER

by the MacDiarmid Institute, Professor Brooker and Associate Professor Marshall recently visited the region, to explore the potential industrial implications of their work. Professor Brooker says that she found the meetings with the team at Venture Taranaki to be "... really invigorating. They have such a positive can-do attitude, and they're pushing to build this much greener future. It's exciting." She plans to stay in close contact, and Hiringa Energy have agreed to be part of her advisory board on grant applications. But, Professor Brooker says, they're not thinking too far ahead just yet. "In catalysis, you can get things badly wrong if you're not careful,

so we're taking the time to set all this up and test our protocols properly. We want to build a robust and reliable testing system. That way, when we have our 'eureka' moment, we can really enjoy it.

"Growing up on a farm, I've always loved nature and been very keen on doing things to help the planet. If we can make catalysts that can genuinely contribute to either carbon zero fuels like hydrogen, or carbon neutral fuels like methanol, then I'll be very happy."

Conducting polymers could help probe the secrets of cell biology

Materials science happens at the surfaces and interfaces of materials, and at the interface between disciplines. For MacDiarmid Institute Principal Investigator, Professor Jadranka Travas-Sejdic, that interface is also where some of the biggest challenges - and most exciting research opportunities - can be found. Professor Travas-Seidic's work at the University of Auckland focuses on what she calls the "fascinating interplay between biology and humanmade electronics." Although her research encompasses a range of topics, one unifying theme is the use of conducting polymers. "These polymers have a remarkable combination of properties - they're electrically conductive, biocompatible, and flexible," explains Professor Travas-Sejdic. "They're very promising for a number of health and bioelectronics applications. And we've shown that it's possible to add other functions to them, through chemical synthesis."

Alleviating mechanical mismatch

The functionalisation of conductive polymers is the subject of Professor Travas-Sejdic's Marsden project, carried out in collaboration with her colleague at both the University of Auckland and the MacDiarmid Institute, Professor David Barker. "One big challenge with conducting polymers is that in general, they're brittle and hard to process," says Professor Travas-Sejdic. "So David and I have taken a biomimetic

approach, using 'side-chain engineering'. This allows us to alleviate the issues of mechanical mismatch, as well as tuning the other properties of the polymers." As a result, they've managed to create electrically-conductive materials that can bend, stretch and self-heal, making them suitable for use in a host of sensors and other biocompatible devices.

The same synthetic platform, which Professor Travas-Sejdic describes as looking "a bit like a bottle brush", goes beyond bioelectronics, and has been used to produce everything, from photoluminescent plastics. to stretchable strain sensors. Professor Travas-Sejdic is also looking to extend the work in collaboration with MacDiarmid Institute Associate investigator, Dr Viji Sarojini. "Viji has expertise in synthesising antimicrobial peptides," she says, "so we're hoping to develop antimicrobial conductive hydrogels that could help in wound healing, or even neuron repair."

Simpler, faster molecular diagnostics

Another use of the platform has been to create conductive substrates that encourage cell adhesion, "...biointerfaces that can be switched on and off in response to external changes." This complements another area of research that Professor Travas-Sejdic had previously undertaken. Working with research groups in

Probing cells in 3D, literally adding another dimension to our understanding of the cell environment discussion

UCLA, Harvard and South Korea, she developed electrospun porous substrates that act as a test-bed for electrically-responsive cells, such as those found in the heart and

nervous system. "We realised that if we could functionalise those substrates by adding biological recognition probes, we could produce a filter to selectively capture biological targets," she says. So in 2017, Professor Travas-Sejdic and Professor Barker, together with Auckland biologist Dr Clive Evans and MacDiarmid

They've managed to create electrically conductive materials that can bend, stretch and self-heal, making them suitable for use in a host of sensors and other biocompatible devices

Institute Emeritus Investigator, Professor David Williams, successfully applied for funding from the MBIE Endeavour programme.

"Our goal is to develop a simpler, cheaper and faster way to carry out molecular diagnostics so we've been working closely with colleagues in the School of Medicine," explains Professor Travas-Sejdic. "The substrate that we've now made can rapidly pick out specific target molecules and because it is conductive, we can use electrochemistry to extract those molecules for analysis." In principle, the 'capture' stage could be as simple as pouring complex fluids through the filter. The 'release' step would involve adding the filter to a clean buffer and applying a voltage. "It could be just as easily applied in the field as in the lab," says Professor Travas-Sejdic. She is keen to

develop this idea further, and is in with patenting

experts at the University of Auckland. She says, "We have demonstrated the proof-ofprinciple, so we know it works. The next stage will be to extend it

2019

to other targets, and to test how it performs with complex samples like blood or plasma."

Electrically stimulating the growth of neural stem cells

For Professor Travas-Sejdic, developing novel materials is only part of the challenge. "I'm also really interested in new, effective fabrication techniques." Over the course of several years, Professor Travas-Sejdic and MacDiarmid Institute-funded PhD students Peikai Zhang and Cosmin Laslau, developed one such system – a micro-extrusion printer that can create arrays of 3D pillars, made from her conducting polymers (CP). She explains, "The printing principle is simple; we extrude CP ink from a micro-pipette to form these high aspect ratio microelectrodes; but altogether, it's very complex, so our lab is

the only one that does it that way." Professor Travas-Sejdie arrays offer a potential route to probing cells in 3D, literal adding another dimension to our understanding of the cel environment. One application

of this platform stimulating neural stem cells, a project that Professor Travas-Sejdic is

working on in collaboration the University of Wollongong "Jeremy (Crook) and Eva (Tomaskovic-Crook) used th facilities for cell culturing to grow stem cells onto our microelectrode arrays, and to test how they responded to d compounds," says Professor Travas-Sejdic. "We're now in conversation with Professor

t	
c's	
9	
ly	
0	
11	
on	

Michael Dragunow from Auckland Medical School and Brain Research NZ. We'd like to see if our platform could also be useful in the study of mature human neurons that come from patients."

is in electrically In 2019, Professor Travas-Sejdic became only the fifth woman to be awarded the prestigious Hector Medal, an award previously won by the great **Ernest Rutherford**

with	The scope of Professor Travas-
g.	Sejdic's research and its
	remarkable, world-leading
eir	impact was recently recognised
	by the Royal Society Te Apārangi.
	In 2019, she became only the
0	fifth woman to be awarded the
lrug	prestigious Hector Medal, an
	award previously won by the great
L	Ernest Rutherford.

Researcher profiles

James Storey

Heading away to study, returning home to live Dr James Storey is an Associate Investigator at the MacDiarmid Institute, and a Senior Scientist at the Robinson Research Institute. After completing his PhD under Professor Jeff Tallon at Victoria University of Wellington in 2007, James headed to Cambridge University as a postdoctoral researcher. He says the experience was incredible but that after four years he knew he wanted to come home.

"I knew that by coming back to New Zealand I could have the lifestyle I wanted, near my family, as well as the ability to conduct world-class research. I'm quoting Paul Callaghan word for word here, but New Zealand really is a place talent wants to live."

"I'm quoting Paul **Callaghan word for** word here, but New Zealand really is a place talent wants to live."

> Dr Storey joined the MacDiarmid Institute on his return to Wellington; he was already exposed to the networking and support crucial to him completing his PhD all those years ago. Now mentoring PhD student Thomas Knott, along with MacDiarmid researcher Dr John Kennedy, he encourages his PhD students to make the most of the all the Institute has to offer.

"There are lots of good connections for students working in the field of advanced materials. It adds a big value to the PhD experience."

Since becoming an Associate Investigator, Dr Storey's research has evolved. He began looking into fundamental hightemperature superconductors and over the last four years has migrated to applied research. His main project, funded under the MBIE Endeavour Fund, has his team focused on developing a prototype aircraft motor, specifically working on a levitation bearing programme using superconductors and theoretical modeling. His group of researchers at the Robinson Research Institute is small, and his work niche, but he says being part of the MacDiarmid Institute allows all researchers in the relevant field to pull on their resources together in one place.

"There have been so many collaborative opportunities as a result of being part of the MacDiarmid."

Dr Storey has been appointed leader of the Tomorrow's Electronic Devices (TED) theme.

Krista Steenbergen

Growing up in the MacDiarmid Institute New Associate Investigator, Dr Krista Steenbergen, has a long history with the MacDiarmid Institute. On arriving in New Zealand from the United States in 2009, she became the now Co-Director, Associate Professor Nicola Gaston's, first PhD student.

Dr Steenbergen loves outreach and engagement, such as being part of a panel on *Women in Science* during TechWeek. She says she loved speaking to girls at an age where they were making decisions about their future.

"Having part of the Institute dedicated to outreach and community makes it easy and fun to be part of events like this. I definitely want to do more in the future."

"It was a magnificent environment to grow up in as a PhD student."

Despite taking up postdoctoral research positions in Berlin and Kansas, the collaborative community she has found herself within the MacDiarmid Institute is unlike anything she has witnessed worldwide.

"Everyone pays attention to each other's research. There's really nowhere else like it."

"Everyone pays attention to each other's research. **There's really** like it."

Jack Chen Meeting the right people

For Dr Jack Chen, becoming an Associate Investigator with the MacDiarmid Institute this year has, he says, given him introductions to and connections with senior researchers he would likely otherwise not have met.

Dr Chen, who is a Senior Lecturer in

Chemistry at Auckland University of

Technology, is making catalysts that

interactions - allowing the creation of

"We recently added a light-responsive

system. This has applications in smart

He says being in the Institute is a real

intelligent chemical networks."

materials, computing and molecular level

drawcard for students. "The students get to

come to Institute symposia and meet their

peers from up and down the country - I can

see how much fun they have - and these

are their future research peers, so they're

building great connections early."

functional group to the hydrophobic part

of the surfactant - so we're now able to use

light to activate and deactivate the catalytic

stimulus-responsive systems.

reversibly self-assemble using hydrophobic

"As an early career researcher, one of the hardest things is meeting the right people. The most important NZ scientists in my field are here in the MacDiarmid, so getting to present my work to them at theme meetings, and working together on ideas for the rebid has been a great way to interact with them. It's such a collaborative environment. Elements of my ideas even made it into the rebid as one of the projects - so that's been very exciting."

"The most important NZ scientists in my field are here in the MacDiarmid Institute, so getting to present my work to them and working together on ideas has been a great way to interact with them. It's such a collaborative environment."

Nate Davis

Heading back to a smaller pond Not many researchers moving from Cambridge University in the UK, to a smaller university in New Zealand. would be as excited about the move as MacDiarmid Institute Associate Investigator Dr Nate Davis is. "Being here in NZ is actually amazing. I have been given such a great opportunity to grow and make a name for myself. New Zealand is a great place for this. I have learnt a lot from the University research department about writing grants which is essential to getting funding and growing your group. And being part of the MacDiarmid Institute has greatly increased my connections though NZ." He says NZ is a great place for younger researchers.

"It's a smaller pond, so you can grow and be fostered by organisations like the MacDiarmid Institute, and by the policies and government support for renewable technologies."

"It's a smaller pond, so you can grow and be fostered by organisations like the **MacDiarmid Institute and by** the policies and government support for renewable technologies."

Dr Davis says being a younger researcher comes with its challenges though; workload being one of them.

"I review for about nine journals, and also teach, write grants and still get publications out; ideally more and more each year to show growth. It seems like some of those things get simplified when you're a bigger name. You've taught the same course for years so it's less time input - students come to you; you have established funds and connections etc."

More complicated than just chemistry He says the job of an academic is a lot more complicated than just chemistry. "It's like running a small company securing finances, hiring students and delivering output to get more funding, all on top of teaching. MacDiarmid really helps with networking, exposure, students resources, guidance and collaborations."

Dr Davis has had a fair amount of success this year in funding rounds - \$1.5 million - so what does this mean for him and his research?

"In simple terms it means I can afford to expand my lab to four PhD students and one postdoc over three years. I will have enough people in the right place to really start to do a nice bit of science which can then link with the wider NZ network through the MacDiarmid to form collaborations and future projects. This will give me a cohesive research group and subsequent research outputs that will place me in a great position for the next stage of my career."

New Associate Investigators 2019

Dr Ebubekir (Ebu) Avci is a Lecturer in Mechatronics in the School of Food and Advanced Technology at Massey University. His research interests include nano-scale robots for molecule analysis, micro-scale robots for cell manipulation, and millimeter-scale robots for GI Tract analysis. In addition, he is interested in micronano manufacturing to develop novel smart mechanisms.

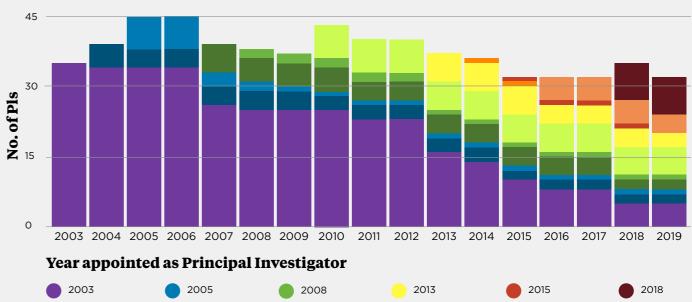
Dr Jack Chen is a Senior Lecturer in Chemistry at the Auckland University of Technology. His research group is interested in the way nanoparticles and molecules self-organise into functional architectures. He is also leading a project into sustainable chemistry in water catalysed by multifunctional gold nanoparticles.

Dr Marcus Jones is a Senior Lecturer in Chemistry at the Auckland University of Technology. He is interested in the ways that nanoparticles interact with light: how they absorb light, emit light, and convert its energy into different forms. He aims to develop new ways to harvest photons for solar energy and enhance fluorescence for displays and biosensing applications.

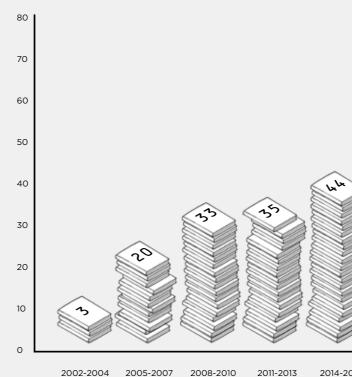
Lecturer in the School of Chemical and Physical Sciences at Victoria University of Wellington and AI of the Dodd Walls Centre for Photonic and Quantum Technologies. He works on the synthesis of different nanomaterials (organic/inorganic) for optoelectronic applications such as photovoltaics, light emitting diodes and luminescence solar concentrators.

Associate Professor Peng Cao teaches in the school of Chemical and Materials Engineering at the University of Auckland. His research is primarily focused on developing novel materials for energy-storage and lightwhile-strong materials for sustainability. Funded by Science for Technological Innovation (SfTI), Dr Cao's team is developing, for lithium-ion battery applications, self-healing silicon-based anode materials, which have shown significant improvement in energy capacity.

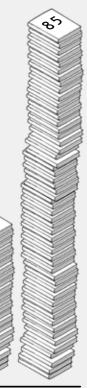
Dr Eva Anton is a Postdoctoral Research Fellow at the School of Chemical and Physical Sciences at Victoria University of Wellington. Her research is on magnetic materials and memory devices for superconducting computers. Dr Anton's research aims to develop computer memories that operate at the ultra-low temperatures required by more energy efficient, fast superconducting computers to pave the way for a sustainable growth of our digital resources.



Dr Vedran Jovic is a Research Development Scientist in Energy Conversion Systems at GNS Science. His current work involves the development of materials and processes for electrocatalytic H₂ production and for conversion of carbon emissions to higher value chemicals. Much of his work involves fundamental synchrotron studies of the materials electronic band structure.


Dr Krista Steenbergen is a Physics Lecturer in the School of Chemical and Physical Sciences at Victoria University of Wellington. Her research is focused on using and developing computational methods to characterise material properties. She is particularly interested in how materials properties change at the nanoscale. Dr Steenbergen's long-term research is focused on discovery and characterisation of materials with application to renewable energy, battery and sensing technologies.

The changing face of the **MacDiarmid Institute**



2004 2007 2010

High impact publications over time (journal impact factor greater than 10)

Out of the lab 34

2014

2016

2014-2016 2017-2019

Awards successes

Royal Society Honours Awards

Don Cleland Massey University	Scott Medal
Keith Gordon University of Otago	MacDiarmid Medal
Cather Simpson University of Auckland	Pickering Medal
Jadranka Travas-Sejdic University of Auckland	Hector Medal

Kiwinet Awards

Margaret Brimble	BNZ Supreme Award	
University of Auckland and SapVax	Baldwins Researchers Entrepreneur Award	
Will Charles Auckland UniServices & University of Auckland	MinterEllisonRuddWatts Commercialisation Professional Award	
Shalen Kumar AuramerBio/Victoria University of Wellington	Norman Barry Foundation Breakthrough Innovator Award	

Awards - Other

Margaret Brimble University of Auckland	Inducted into the American Chemic
	Zonta Centenary Women of Achieve
	Sosnovsky Distinguished Lecturer -
	Dewar Lectureship - Queen Mary Un
Sally Brooker	Sesquicentennial Distingushed Chai
University of Otago	Inaugural Sesquicentennial Disting
Will Charles University of Auckland UniServices	MinterEllisonRuddWatts Commerci Awards 2019
Don Cleland Massey University	Scott Medal – The Royal Society Te A
Anna Garden University of Otago	Early Career Award for Distinction in
Keith Gordon University of Otago	Royal Society of Chemistry Australia
Justin Hodgkiss Victoria University of Wellington	2019 Maurice Wilkins Centre Prize fo
Franck Natali Victoria University of Wellington	Postgraduate Supervisor Award at th Research Excellence Awards
Krista Steenbergen Victoria University of Wellington	NeSI Merit Award, 1 million CPU-ho
Jadranka Travas-Sejdic University of Auckland	Fellow of the Scientific Council for C Science and Art, Petrochemical Sect
Geoff Waterhouse University of Auckland	Web of Science Group 2019 Highly C
Stuart Wimbush Victoria University of Wellington	Fellowship of the UK Institute of Phy

ical Society Medicinal Chemistry Division Hall of Fame

vement Awards

- University of Wisconsin, Milwaukee, USA

University, London, UK

nair at the University of Otago

guished Professor at the University of Otago

cialisation Professional Award - KiwiNet Research Commercialisation

e Apārangi Research Honours 2019

n in Research

diasian Lectureship

e for Chemical Science – New Zealand Institute of Chemistry

the Victoria University of Wellington Postgraduate

nours (NeSI core-hour allocation for supercomputer time)

r Oil and Petrochemical Economy and Energy of the Croatian Academy of ection, Croatian Academy of Sciences and Arts

Cited Researcher

Physics (FInstP)

Funding successes

2019 Marsden Grants

Margaret Brimble University of Auckland	Unleashing new generation lanthipeptides from nature to combat antimicrobial resistance
Shen Chong with Grant Williams and Jeff Tallon Victoria University of Wellington	Next generation magneto-piezochromic composites for optically based intelligent magnetic field sensing
Matthew Cowan with Paul Kruger University of Canterbury	Engineering defect-free organic framework membranes in tubular ceramic supports
Nate Davis Victoria University of Wellington	Photon multiplying light harvesting antenna systems for luminescent solar concentrators
Renwick Dobson University of Canterbury	Understanding bacterial membrane transport protein: setting an antimicrobial TRAP
Keith Gordon * University of Otago	Development and assessment of a multi-spectroscopic fiber optic probe capable of disease diagnosis in the gastro-intestinal tract
Justin Hodgkiss Victoria University of Wellington	Can enhanced exciton diffusion propel organic photovoltaic cells beyond the bulk heterojunction?
Eric Le Ru * Victoria University of Wellington	Could airborne microplastics play a role in climate change?
Shane Telfer Massey University	Reinventing asymmetric catalysts using multicomponent frameworks
Grant Williams Victoria University of Wellington	Controlled magnetic heterogeneity

*Contributing as an AI

2019 MBIE Funding

Research programmes

Margaret Brimble University of Auckland	 New Frontiers in Antiviral Development Novel Boron Carriers for Boron Neutron Capture Therapy, a Non-invasive Cancer Treatment Precision Antimicrobials: Targeted Therapeutics for Food and Companion Animal Infections
Chris Bumby, Aaron Marshall and John Kennedy – Victoria University of Wellington, University of Canterbury and Gl	Zero-C0 ₂ production of essential technological metals
Petrik Galvosas Victoria University of Wellington	3-D printed porous media for process engineering
Joe Trodahl Victoria University of Wellington	Magnetic memory for superconducting computing
Stuart Wimbush Victoria University of Wellington	Thermal management of cryogenic superconducting magnets in small satellites
Smart Ideas	
Nate Davis Victoria University of Wellington	Non-toxic hybrid nanomaterials for luminescent solar concentrators
John Kennedy and Geoff Waterhouse GNS and the University of Auckland	Nano-catalytic surfaces for efficient, stable fuel cells and eco-friendly hydrogen production
Cather Simpson and Michel Niewoudt University of Auckland	Drinking-water pathogen monitoring in real-time
Volker Nock – University of Canterbury	Development of a multi-axis spin-coating system to coat curved surfaces

Catalyst

James Storey and Ben Mallett Victoria University of Wellington and University of Auckland	Superspin – using polarised spins a high-temperature superconductors
Charles Unsworth University of Auckland	Small Brain Cancer Networks on Ch

Fellowships

Volker Nock	Electrotaxis and protrusive force g
(Rutherford Discovery Fellowship)	biocontrol strategies
University of Canterbury	

2019 NSC (National Science Challenge) Grants

Jack Chen Auckland University of Technology	Cellulose-based surfactants: Enhar environmental impact
Nate Davis Victoria University of Wellington	Hybrid organic/inorganic nanopart
Laura Domigan University of Auckland	Science for Technological Innovation
Simon Granville and Ben Ruck Victoria University of Wellington	A new transistor exploiting electron
Volker Nock University of Canterbury	SfTI Medical Devices spearhead Tra
Emilia Nowak Massey University	Development of an innovative mult

2019 HRC (Health Research Council) Grants

Geoff Jameson Massey University	Transforming the paradigm of func
Jadranka Travas-Sejdic University of Auckland	A novel device for early cancer det

2019 KiwiNet Funding

Geoff Jameson Massey University	Novel inhibitors of cytidine deamin
Aaron Marshall University of Canterbury	Recovery and treatment of spent ac
Franck Natali Victoria University of Wellington	Ammonia Production Catalyst

2019 Domestic Grants - Government Funding

David Barker University of Auckland	Molecular Sponges - MPI - Primary C
Laura Domigan University of Auckland	Lens protein biomaterials for ocular
Volker Nock University of Canterbury	Photonic Professional GT2 - Lottery

and spin correlations to probe the enigmatic electronic phase behaviour of rs

Chip

generation in fungal and oomycete pathogens - Pathways to new

ancing manufacturing and product performance with minimal of Technology

rticles for luminescent solar concentrators

tion - 4D printing

on spin

ranche 2

ltidimensional manufacturing and intelligent fluid management

nctional genome organisation

tection

inase

acid from galvanizing plants

y Growth Partnership with NZ Winegrowers

ar surgery - MBIE Pre-Seed Accelerator Fund and Royal Society

y Health Equipment Grant and UC Equipment Grant Nanoscribe

2019 Domestic Grants - Other

David Barker University of Auckland	Senzatek synthesis contract
Margaret Brimble University of Auckland	 PD Derivatives 2019 PGGRC Inhibitor programme Drug Development CGRP Lipidated Pramlintide Pramlintide AMR Flagship - (3.3) Overcoming antimicrobial resistance New Toxins for Antibody-Drug Conjugates
Chris Bumby Victoria University of Wellington	Experimental development of chemical production processes (Confidential)
Jack Chen Auckland University of Technology	Tackling the antibiotic resistance crisis - Maurice and Phyllis Paykel Trust
Aaron Marshall University of Canterbury	• Carbon Analysis • Battery analysis • Polymer/corrosion analysis
Michel Nieuwoudt University of Auckland	Consultant analytical Raman spectroscopist for Orbis Diagnostics Limited

International - 2019 Public Sector Funding

Martin Allen University of Canterbury	Controlling the surface chemistry and surface electronic properties of β-Ga2O3 for high-efficiency power electronic devices - Australian Synchrotron Beamtime	
Margaret Brimble Diabetic Cardiomyopathy – New Molecular Intervention Targets and a Biomarker Strategy University of Auckland Diabetic Cardiomyopathy – New Molecular Intervention Targets and a Biomarker Strategy		
Jack Chen Auckland University of Technology	Dynamics of structure formation in stimuli-responsive amphiphilic catalysts - ACNS Neutron Beam Instrument Proposal, Australia	
Anna Garden University of Otago	Artificial nitrogen fixation at ambient conditions through rational catalyst design	
Ben Mallett University of Auckland	 What is the Magnetic Ordering in Cuprate-Manganite Multilayer Sandwiches? A Polarized Neutron Reflectometry and Elastic Neutron Scattering Study (Part II) - ANSTO Neutron Beamtime Interfacial Orbital Order in Cuprate-Manganite Multilayer Thin Film Sandwiches - Australian Synchrotron Beamtime 	
Elke Pahl University of Auckland		
Geoff Waterhouse University of Auckland	 Renewable Energy Technologies - Shandong Provincial Distinguished Foreign Expert Award Chair Professorship in School of Materials Science and Engineering at the South China University of Technology (SCUT) 	

International - 2019 Private Sector Funding

Margaret Brimble University of Auckland	 Synthesis of hPam2 Adjuvants Synthesis of SapVax hPam2 Adjuvants Sep 2019 Asymmetric Synthesis of SFN876-3 	
Petrik Galvosas Victoria University of Wellington	NMR based mass flowmeter (ECS led)	

2019 University Internal Funding

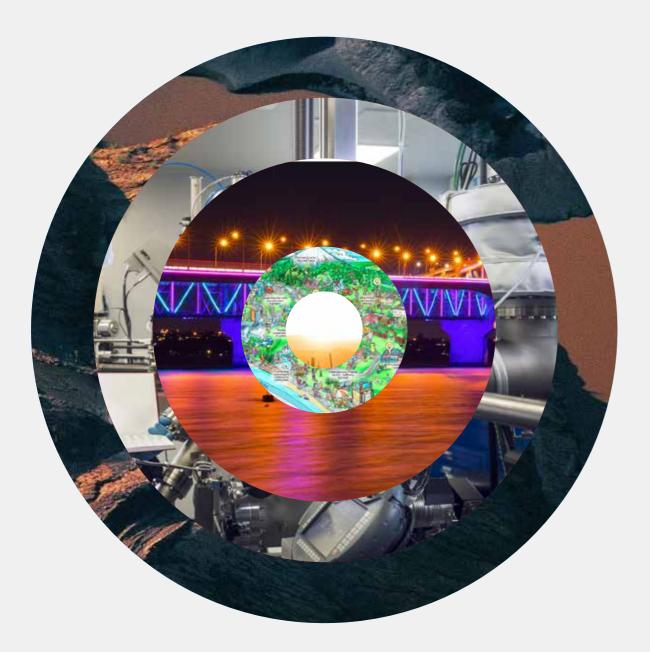
Ebu Avci

The Wisdom of Crowd: Swarm Behaviour of Micro Robots

MacDiarmid Institute

Massey University	
Bob Buckley Victoria University of Wellington	Electronic Properties of Heusler Based
Laura Domigan University of Auckland	Hemoglobin protein nanofiber scaffold
Simon Granville Victoria University of Wellington	Electronic Properties of Heusler Based
Marcus Jones Auckland University of Technology	AUT Faculty Research Development Fu
Elke Pahl University of Auckland	PBRF (University of Auckland)
Jadranka Travas-Sejdic University of Auckland	Design of Novel Antibacterial Platforms University of Auckland
Mark Waterland Massey University	Characterising vibrational modes of at t of MoS ₂ nanoribbons and quantum dots

l Weyl Semimetals - VUW Research Fund Grant


ds for tissue engineering applications - University of Auckland FRDF

l Weyl Semimetals - VUW University Research Fund

Fund

ms Based on Capacitive Materials - PBRF, School of Chemical Sciences,

t the edges of low-dimensional nanomaterials: Terahertz spectroscopy of ${\rm MoS}_2$ nanoribbons and quantum dots - ANSTO / New Zealand Synchrotron Group

2. Into the marketplace.

We seek to get our innovations into the global marketplace while applying our research to solve New Zealand's existing industrial, sustainability and business challenges. This work makes a difference for New Zealanders by earning export revenues and stimulating high-tech jobs within the high-value manufacturing (HVM) sector and by contributing to sustainability goals. We work alongside companies, iwi and other groups, to address their business opportunities. We connect financial capital, human capital, science and business, to enhance New Zealand's deep tech pipeline.

MacDiarmid Institute affiliated people fill the leaderboard of annual KiwiNet Awards

Six of the KiwiNet awards finalists this year were MacDiarmid Institute affiliated; our researchers, Board members and CEOs of affiliated start-up companies. MacDiarmid people

won three award categories as well as the KiwiNet BNZ Supreme Award.

Since 2016 there have been eight different MacDiarmid Institute

Investigators, alumni and startup leaders as finalists for KiwiNet awards across 'Breakthrough' and 'Entrepreneur' categories, winning four category awards and two supreme awards.

Distinguished Professor Dame Margaret Brimble, cofounder of SapVax.

BNZ Supreme Award Distinguished Professor Dame Margaret Brimble, Co-founder of SapVax

Norman Barry Foundation Breakthrough Innovator

Winner - Dr Shalen Kumar, CEO of Auramer Bio Limiited

Finalist - Dr Brendan Darby, CEO of Marama Labs Limited

Baldwins Researcher Entrepreneur Winner - Distinguished Professor Dame Margaret Brimble

Finalist - Dr Leonardo Negron, CTO of Hi-Aspect Limited

MinterEllisonRuddWatts **Commercialisation Professional** Winner - Will Charles, Executive Director Commercialisation Uniservices and MacDiarmid Institute Board member

Finalist - Geoff Todd, Previous Managing Director Viclink and MacDiarmid Institute Board member

AuramerBio

Dr Shalen Kumar, CEO of Auramer Bio, was the recipient of the KiwiNet Norman Barry Foundation Breakthrough Innovator category. Auramer Bio supports biosensor solutions for roadside, workplace and environmental testing and provides aptamer development for partner platforms across electrochemical, lateral flow, and microfluidic systems.

"We want to be the leaders in custom diagnostics development, making sure that our components are integrated into other companies' products globally." AuramerBio is able to rapidly design, develop and synthesise new bespoke single-stranded DNA bio-receptors, called aptamers. With a broad range of components already on the market, Shalen is always on the lookout for new technical challenges to solve that will continue to set AuramerBio ahead of the international competition.

"We want to be the leaders in custom diagnostics development, making sure that our components are integrated into other companies' products globally."

AURAMERBIO CEO DR SHALEN KUMAR

SapVax

SapVax is based on the licensed intellectual property developed by Distinguished Professor Dame Margaret Brimble (MacDiarmid Associate Investigator), Professor Rod Dunbar and Dr Geoff Williams. The company is dedicated to the development and commercialisation of a pipeline of powerful, self-adjuvanting peptide-based cancer vaccines. Their proprietary platform consists of highly specific TLR2 agonist adjuvants which can be covalently conjugated to virtually any synthetic peptide antigen in a rapid and cost-effective manufacturing process. SapVax has 2 lead programs, 1) SVX-ESO which targets the cancer testis antigen, NY-ESO-1, which is commonly overexpressed in ovarian cancer and 2) SVX-NEO, a discovery stage personalized neoantigen cancer vaccine. SapVax plans to identify its lead candidate O1 2020 and conduct GLP safety and toxicology studies, CMC/GMP and clinical site reviews Q3-4 2020. Additionally, SapVax intends to secure a co-development deal with a neoantigen company in Q2 2020 to develop SVX-NEO. In the next year, SapVax aims to secure \$25M in Series A financing to progress SVX-ESO through IND-filing and completion of Phase 1 clinical safety and immunogenicity and SVX-NEO through IND-filing.

Hi-Aspect Limited

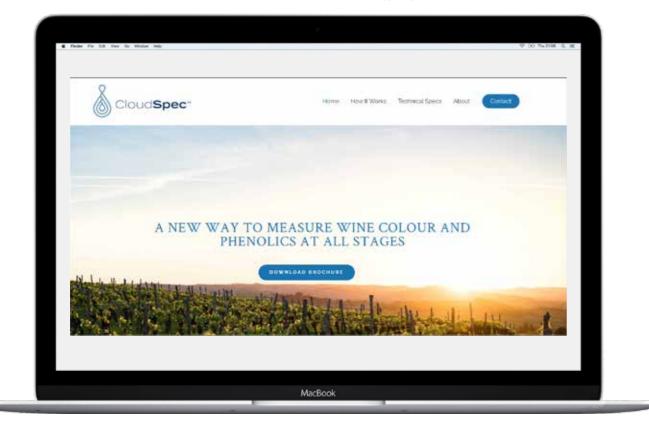
Hi-Aspect is commercialising protein nanofibril technology for a range of over-the-counter medicated skin care and wound care applications with a current focus on the acne market. CTO Dr Leonardo Negron, KiwiNet finalist in the Baldwins Researcher Entrepreneur category, demonstrates the value of crossdisciplinary experience in leading the technical development of a highly regulated product. With his training and experience spanning clinical pharmacy, drug development and medical diagnostics R&D, he is well placed to manage the complexity of a technical development programme in a deep tech startup. This experience enables him to lead the company's development programme through regulatory compliance, as well as addressing the interplay between product design, customer feedback and product efficacy. Leonardo has valued being able to tap into the experienced commercialisation support networks locally and believes New Zealand entrepreneurs who seek out experienced advisors and highly qualified graduates will be well positioned to succeed.

"The MacDiarmid intern we received was a highly valuable asset for Hi-Aspect, they were well skilled in nanotech and were able to "just get on with it" with minimal further training from me." HI-ASPECT LIMITED CTO DR LEONARDO NEGRON

For 2020 Hi-Aspect will be raising further capital to fund market expansion and new product development for its "over the counter" pharmacy range and seeking licensees for its Fibraspect³⁰⁰ ingredient in applications outside of human health.

2019

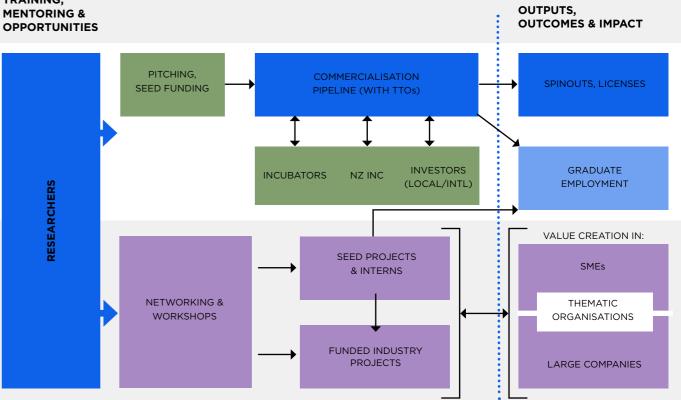
Marama Labs


Marama labs is developing world-first technologies that are pushing the boundaries of how spectroscopy is applied to industry challenges. The company is taking on a new staff member to further develop, test and calibrate their CloudSpec instruments, as they move from prototype to market ready-product. The CloudSpec instruments have been developed to deliver simultaneous measurement of absorption, extinction and scattering spectra in clear and turbid liquids and have been validated in the wine industry.

Being a deep tech startup, the team are comfortable collaborating with a top research group in Australia one day and applying their technology in partnership with a wine producer the next. With 2020 being the year to roll out the launch of CloudSpec, the team are making progress on engaging a European distribution partner.

"It's awesome to be able to contribute to **New Zealand's** economic success and have scientific talent working in a deep tech startup solving quality problems in the wine industry."

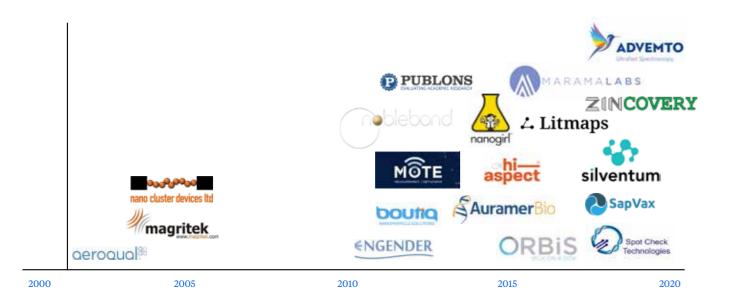
MARAMA LABS CEO DR BRENDAN DARBY, KIWINET FINALIST, NORMAN BARRY FOUNDATION BREAKTHROUGH **INNOVATOR**



An integrated research commercialisation approach

Our efforts towards supporting emerging science entrepreneurs are integrated with the initiatives of the MBIE funded **Commercialisation Partner** Network (KiwiNet, Return on Science and Momentum) as well as the commercialisation offices of each of our partner organisations. This highly connected network that links students, experienced researchers, industry and investors helps NZ researchers

achieve the network scale that enables us to increasingly compete internationally in deep tech commercialisation. Our work provides an integrated approach to building commercial capability among researchers, linking with companies through our "Interface" industry engagement programme, and facilitating the work our partners undertake. As an example, we may identify the potential for a researcher to focus on an industry challenge,


TRAINING, **MENTORING &**

make the relevant introductions to local companies who need the technology, advise on protecting the intellectual property and provide seed funding for projects that meet industry milestones, all to ensure the TTO has high quality opportunities to take to market.

The touchpoints of this approach are shown in the diagram below.

We now have 19 affiliated start-up companies, on average one for each year of the Institute's existence, which employ upwards of 85 people. Our informal survey of recent Institute alumni (see the section *Into the Future*) revealed that they are employed in at least 13 separate NZ deep tech start-ups, including four of our own affiliated start-ups and three Interface partners. Three of these alumni are start-up CEOs (at Marama Labs, Litmaps and Inhibit Coatings). Start-ups are just one model for commercialisation; MacDiarmid Institute scientists have additionally developed 73 patented inventions.

MacDiarmid Institute affiliated start-ups:

R&D Spending (2018 and 2019)	\$10,300,000*
Employees (FTEs in 2019)	90
R&D staff (FTEs in 2019)	40.4
Capital raised (2002 to Dec 2019)	>\$23.2 million*
Number of start-ups and spinouts preparing to raise capital	7 companies
Number of patent applications by researchers (2019)	13
Number of patents granted to researchers (2019)	9
Number of inventions disclosed to TTOs (2019)	10

*Lower than actual totals due to commercial confidentiality

Growing the next generation of science entrepreneurs

We continue to support our researchers to take their science into the commercial sphere and in 2019 we teamed up with Exponential Founders (the XF90 programme) to identify outstanding researcherentrepreneurs affiliated with the Institute. We've supported these researchers and now leaders of start-ups into coaching programmes with successful entrepreneurs, Daniel Batten and Dr Shieak Tzeng, with the goal of instilling an ambitious growth mindset and breeding successful serial entrepreneurs right here in New Zealand.

"A transformative experience for me ... helped me deal with many professional and personal fears and obstacles, accelerating how fast I achieve things, reducing the effort that takes, and we will probably see the impact on the results I achieve as time goes on."

MACDIARMID INSTITUTE INVESTIGATOR REGARDING XF90

"The MacDiarmid Institute has been proactive in helping students develop skills necessary to be successful entrepreneurs and intrapreneurs."

Bridging academia to industry

Industry engagement, through our Interface programme, is a major pillar of our drive into the marketplace. Internships with Interface partners (e.g. Mint, see the section Into the *Future*) support our alumni employment outcomes. In 2019, we have grown engagement with thematic organisations which represent smaller businesses with shared interests. As part of our Interface activities we ran a Techweek event in Auckland where we brought together researchers and companies with an interest in sustainablity. Examples include groups such as the Sustainable Business Network and the National New Energy Development Centre (page 52), and Māori economy groups, such as FOMA Innovation and Poutama Trust.

Executive Director and Co-Founder, Hiringa Energy, speaking at ur Techweek event

ndustry Interface Event TechWeek 2019 - Advanced materials, making an impact on energy and sustainability

"If we had continued along the path of trying to crack this problem in-house, without the **MacDiarmid Institute**, it is unlikely we would have been successful."

JAMES OBERN (COMMERCIAL DIRECTOR, AVERTANA)

"The MacDiarmid Institute seed project enabled us to move forward into two other collaborations with confidence." DR OLLIE CRUSH (CSO, MINT INNOVATION)

Tech Tasters

The Institute's commercialisation success is built on a pipeline of ideas and opportunities emerging from the lab. This pipeline is in turn supported by effective grassroots training and other activities, including 'business-as-usual' such as commercialisation workshops, IP training and commercial project seed funding.

In 2019, we ran an inaugural "Tech Tasters" start-up showcase alongside our AMN9 conference and engaged with business mentors XF90 for advanced mentoring of our exceptional entrepreneurs (above). Investors such as Matū (see the section Into the Future) are attracted to the Institute by our start-up portfolio and our research focus that meets the needs of the global trend towards desirability of "deep tech" and "sustainability" investments.

"The MacDiarmid Institute does a great job of connecting exciting deep tech with investors like us and that helps us get New Zealand's best science and technology out of the lab and into the real world."

GREG SITTERS AND DR ANDREW CHEN. MATÜ FUND

Engaging with Māori business

The MacDiarmid Institute has made meaningful headway in connecting to the Māori economy through a number of initiatives this year. One of these was sponsoring and attending the Federation of Māori Authorities annual conference where Māori trusts and business leaders addressed the challenges and business opportunities they face. We partnered with Victoria Business School, FOMA Innovate and KiwiNet to hold a workshop (Te Kōmanawa – a spring or well) that brought together 18 Māori trusts and the tech transfer professionals from universities

POUTAMA

and Crown Research Institutes to build bridges and mutual understanding of the technology opportunities for Māori emerging from New Zealand's scientific research. We have also signed a Memorandum of Understanding (MOU) to work with Poutama Trust, an independent charitable trust established in 1988 that strives to create an environment for successful business ventures and economic growth for Māori. Poutama has a wide range of business members undertaking R&D and commercial activities across numerous industries, e.g. Movers in Hemp Innovation (MIHI) and Waiū Dairy, a geothermal milk processing plant in partnership between Māori and Japanese company Imanaka.

Materials science in the new energy sector

In May, the Government hosted the Just Transition summit in Taranaki, a nationwide summit on preparing to thrive in a low emissions economy. The Prime Minister announced funding to establish a National New Energy Development Centre in Taranaki, along with a new strategic investment in clean energy research. The summit featured an inspiring range of local and international speakers. We were invited to highlight emerging material science technologies, including MOFs, mixed matrix membranes, a flow battery, and luminescent solar concentrators. Following on from the Just Transition summit, a team of MacDiarmid Institute researchers visited Venture Taranaki in September to discuss economic opportunities of new materials research into decarbonisation and sustainability and other ongoing opportunities with the National New Energy Development Centre (NNEDC) and Venture Taranaki.

The NNEDC has appointed MacDiarmid Institute Co-Director Professor Justin Hodgkiss to its Steering Committee, and Deputy Director Associate Professor Geoff Willmott to its Advisory Committee.

The Taranaki region has identified the 'Just Transition' as a way to support people in the oil and gas industry to move into new areas of employment while maintaining their strong engineering and technical services capabilities e.g. developing hydrogen infrastructure for NZ.

The Hydrogen roadmap report released by Venture Taranaki identifies numerous opportunities for materials science to contribute to new national infrastructure developments. Our researchers have had follow up meetings with the region's engineering companies and continue to

Professors Sally Brooker and Justin Hodgkiss (right) presenting to Venture Taranaki

pursue commercial and research partnerships. Our engagement with the hydrogen economy is just one aspect of a wider range of work with NZ sustainability startups (Avertana, Mint, Aquafortus) through Interface and with renewable energy sector (Mercury, Infratec, Hiringa).

Disruptive science for sustainable fertiliser

Globally, ammonia-based fertilisers are responsible for supporting 50 percent of the world's food productionammonia is one of the single largest chemical industrial processes on Earth. MacDiarmid Institute Principal Investigator,

Dr Franck Natali, is leading commercialisation of a newly discovered process to manufacture ammonia at room temperature and low pressure, with support from Wellington UniVentures (previously named Viclink). The team have been working on techniques to deposit thin film coatings of rare earth nitrides and have developed an application of these thin films that enables distributed small-scale ammonia production. A distributed model of ammonia production offers

"A revolution is urgently needed to reduce the massive carbon footprint created by the current industrial production process of ammonia." PRINCIPAL INVESTIGATOR, DR FRANCK NATALI

the exciting prospect of end users of agricultural fertilisers being able to make these where they're needed, substantially reducing logistics and transport costs and emissions. Low energy manufacture would also reduce the carbon dioxide emissions inherent in current manufacturing processes. The group will be developing a prototype scale process in partnership with process engineers this year with recently announced funding from the Preseed Accelerator Fund.

Details of patent granted

licaloou		Eva Anton, Franck Natali and Ben Ruck	"Magnetic materials and devices co US patent US 15/300,753
lisclosu	"Superconducting Switch"	Vladimir Golovko	"Photocatalytic Conversion of Carb Unsubstituted Hydrocarbon(s)" Publication number US 2019 / 0002
	"Luminescent Solar Concentrator"	Marcus Jones	"Quantum Dot Light Emitting Devi
	"Molecular Augmented Reality"	Franck Natali and Ben Ruck	"Rare Earth Nitride Structure or De
	"Novel inhibitor of cytidine deaminase"		US Patent US 15/607,596
	"Recovery and treatment of spent acid from galvanizing plants"		"Doped Rare Earth Nitride Materia US Patent 10,415,153
	"Syringe Pumps"	Jadranka Travas-Sejdic	"Methods and apparatus for quanti
	"Peltier Microfluidics"		impedances" Patent number: 10167501
	"Microfluidic Connections"		

Spinouts formed in 2019

Justin Hodgkiss and Kai Chen	Advemto	
Victoria University of Wellington	Ultrafast Sp	
Eric Le Ru, Brendan Darby and	Marama La	
Matthias Meyer	The world's	
Victoria University of Wellington	absorption,	
Aaron Marshall and Jonathan Ring	Zincovery I	
University of Canterbury	Recycling t	

Patents 2019

Details of invention dis

Chris Bumby	"Superconducting Switch"	
Nate Davis	"Luminescent Solar Concentrator"	
	"Molecular Augmented Reality"	
Geoff Jameson	"Novel inhibitor of cytidine deaminase"	
Aaron Marshall	"Recovery and treatment of spent acid from galvanizing plants"	
Bill Williams	"Syringe Pumps"	
	"Peltier Microfluidics"	
	"Microfluidic Connections"	
	"Delta Microscope"	
	"High Temperature Microfluidics"	

Details of patent application

Margaret Brimble	Lipidated Polymyxins" VZ Patent Application 757118, 2019	
	"Peptide Conjugates Incorporating Urea Elements and Their Use as Vaccines" US Provisional Patent Application No. 62/841,893, 2019	
	"Peptide Conjugate Amylin Agonists and Uses Thereof" US Patent Application 34772US01, 2019	
Simon Brown	"Nanoparticle networks" NZ Patent Application 760520	
Chris Bumby	"Superconducting Switch"	
Laura Domigan	"Biomaterials and Methods Related Thereto"	
Justin Hodgkiss	"Optical system for narrowing the bandwidth of radiation" PCT/NZ2018/050170	
Jenny Malmström	"Skin Engineering – electrospun technology" PCT/NZ2017/050177	
Volker Nock	"POC insulin sensor"	
	"Transistor valves and self-closing valves for capillaric circuits"	
Shane Telfer	"Metal-organic frameworks for gas adsorption"	
Jadranka Travas-Sejdic and David Williams	"Methods and Apparatus for Amplifying Nucleic Acids" Publication Number 20190062808	
David Williams	"Method for Calibrating Networks of Environmental Sensors" US Patent Application 62,798,580	

s comprising rare earth nitrides"

Carbon Dioxide and Water Into Substituted or 0002364 A1

Devices"

r Device and Fabrication Method"

erials And Devices Comprising Same"

antification of nucleic acid amplification by monitoring

Spectroscopy

abs Limited d's first UV-Vis spectrophotometer that can simultaneously measure n, extinction, and scattering spectra of clear and turbid liquids.

Process Technologies ig the galvanizing industry's spent acid and zinc for reuse.

3. Into the community.

We share the beauty of science to inspire teachers, students and communities and to ignite, or reignite, a love of science.

We do this through our people and their stories. **Our Investigators, students and postdoctoral** fellows are our story tellers.

Each year, dozens of our people directly engage with thousands within the community. Through our partnerships, we reach hundreds of thousands. Communication is a two-way street; whilst we endeavour to inspire, we ourselves are enriched and inspired by this engagement.

Building capability at the intersection of science with mātauranga Māori

Our ongoing partnership with the Whakarewarewa Village Charitable Trust in Rotorua aligns materials science alongside mātauranga Māori in order to explore the synergies of these two knowledge systems. Planning is already in place for the research findings and experiences from the joint project to be shared openly in a variety of ways, including Wānanga, educational resources and other outreach through local schools.

We submitted two joint research papers for the World Geothermal Congress in 2020. These have both been accepted and will be presented at the Congress (postponed to 2021) hosted in Reykjavik, Iceland.

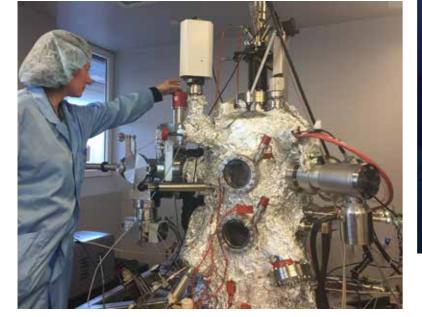
How can materials science offer a greener future for our planet?

Climate change is undeniable. The IPCC 2018 report made this clear. Humanity is on notice to keep global warming below 1.5°C to prevent a climate change catastrophe.

To achieve these targets, we will need new materials and the renewable technologies based on these materials, including solar, batteries and new types of computing. With this clearly in our sights, we focussed our annual regional showcase on 'NZ Innovation for Sustainability'.

Our researchers again traveled to the regions - Hawke's Bay, Nelson, Queenstown, Wanaka, Tauranga and Gore - speaking with science societies, schools and business groups. These researchers were

Principal Investigators, Associate Professor Carla Meledandri. Professor Shane Telfer, Dr Natalie Plank, Associate Professor Nicola Gaston, and Associate Investigators, Dr Matt Cowan, Dr Marcus Jones, Dr Laura Domigan, Dr Ben Mallett, Dr Anna Garden and Dr Saurabh Bose.


We took our 'NZ Innovation for Sustainability' showcase to the main centres as well, speaking to Rotary clubs across Auckland, Dunedin, Wellington and Christchurch. These were led by Principal Investigators, Associate Professor Geoff Willmott and Professor Keith Gordon, Associate Investigators, Dr Nate Davis, Dr Viji Sarojini, Dr Guy Dubuis and Postdoctoral Fellow, Dr Rodrigo Martinez Gazoni.

NZ Innovation for Sustainability

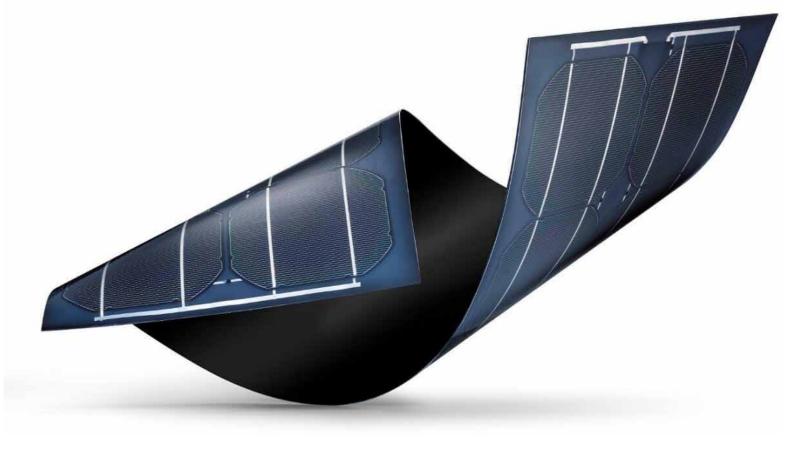
solar energy materials new battery technologies

Materials science offering a greener future fo

theguardian We have 12 years to limit climate change catastrophe, warns UN

nature Governments must take heed of latest IPCC assessment Report makes clear that there is no safe level of global warming

Climate change impacts worse than expected, global report warns


The Intergovernmental Panel on Climate Change says the world is headed for painful problems sooner than expected, as emissions keep rising.

The temperature rise

Why the IPCC's report on global warming matters

A new report produces an odd mixture of alarm and apathy

Ardern says New Zealand on 'right side of history' as MPs pass zero-carbon bill

Zero Carbon Bill passes with nearunanimous support, setting climate change targets into law

Zero Carbon Bill passes final reading

newsroom.

Unanimous support for landmark Zero Carbon Bill

AMN9 – 9th International Conference on Advanced Materials and Nanotechnology

We held our 9th International Conference on Advanced Materials and Nanotechnology at Te Papa Tongarewa in Wellington, 10 – 14 February. The biennial AMN conferences are becoming increasingly international. The majority of the nearly 400 delegates travelled to Wellington from overseas, including Australia, South Korea, the United States, Taiwan and Germany.

Minister of Research, Science and Innovation, Hon Dr Megan Woods, opens AMN9

AMN9 - much more than a typical Materials Science conference

- Dr Michelle Dickinson and Professor Cather Simpson gave a public lecture to a packed-out theatre about their work and being women in science.
- 50 mothers and daughters attended the Nanogirl-led 'Kitchen Science' workshop.
- School visits by 600 children from low and mid-decile schools (ages 8-14) attended the Nanogirl Live! Show.

- Over 100 people attended a screening of Dancing with Atoms, a biography of our founding Director, Sir Paul Callaghan, with a gold coin koha raising money for the Cancer Society.
- An evening talk by Harvard University Professor, Dan Nocera, on transitioning to a solar-based society, was attended by in excess of 150 people.
- A 'Women in Science Breakfast', attended by over 100 NZIC members and conference delegates, to

celebrate the progress made by women in STEM in New Zealand. Speakers included Associate Professor Nicola Gaston and Dr Pauline Harris and - by video, Professor Juliet Gerrard and Julie Maxton (CEO of the Royal Society London).

- Associate Professor Martin Allen ran his SunSmart programme for 80 school children at a Wellington school.
- A 'Science media savvy' day, in collaboration with the Science Media Centre, to upskill investigators on their science communication.

MacDiarmid Institute

DiscoveryCamp and NanoCamp

Every year, a group of New Zealand's brightest year 12 and 13 secondary school students spend a week at NanoCamp and DiscoveryCamp. The camps are hugely popular and attract many more applications than there are places available. The five day, all-expenses-paid residential programmes give students a handson opportunity to experience science under the guidance of New Zealand's top nanoscience and advanced materials researchers.

The MacDiarmid Institute - is now in its 11th year, giving Māori and Pasifika students with a passion for the sciences a chance to enhance their scientific knowledge and help them carve out a potential career in science and technology. Hosted by our researchers, the camp gives these students an experience of the university environment beyond taught coursework. Entering into the university environment can be alienating for Māori and Pasifika students; connecting the students with researchers and with university communities that provide support has proven successful.

DiscoveryCamp alumna Mariah McDonald (Ngāi Tahu, Tuahuriri) graduated with a degree in Engineering, and she is now studying for her PhD in Biomechanical Engineering. She attended the camp in her final year of high school and said this allowed her to try out different things and helped her discover what she wanted to study.

Māori and Pasifika continue to be under-represented across science and technology in New Zealand, so DiscoveryCamp intervenes early.

To help with the transition in education, high school students are given a valuable opportunity to become familiar with university life, by attending lectures and living in residential halls.

Instead of feeling frustrated over these statistics, DiscoveryCamp alumnus Eden Skipper (Ngāi Tahu) said he used this as motivation to achieve great things. After completing a Bachelor of Science with Statistics, Eden says he encourages high school students to not be afraid to go to university, even if they are only one of a few Māori and Pasifika students in their class.

DiscoveryCamp - Te Tohu Huraina "A week full of new friends, amazing mentors, fascinating learning and great social activities, I couldn't have asked for a more awesome trip to be a part of." DISCOVERYCAMP PARTICIPANT

> The camps took place between 12th and 17th January 2020, and this year were located at two different locations: University of Auckland and Victoria University of Wellington. The camp programmes included such diverse activities as visits to nanoscience laboratories, hands-on activities in the fields of biosensors and microfluidics, preparing and delivering videos and excursions to Zealandia, Weta Workshops and Tiritiri Matangi Island. We hosted 48 students across the two locations:

NanoCamp - University of Auckland - 15 students (hosted by Associate Investigators Dr Erin Leitao and Dr Michel Nieuwoudt) NanoCamp – Victoria University of Wellington – 15 students (hosted by Associate Investigator Dr Guy Dubuis)

DiscoveryCamp - University of Auckland - 8 students (hosted by Principal Investigator Associate Professor Geoffrey Waterhouse) DiscoveryCamp - Victoria University of Wellington - 10 students (hosted by Associate Investigator Dr Nathaniel Davis) The Wellington-based students particularly valued getting the opportunity to visit Te Papa in Wellington and see behind the scenes with one of their scientists, as well as getting the opportunity to attend a PhD panel and listen to current students speak about their own academic experiences. In Auckland, camp attendees appreciated getting to hear from MacDiarmid Institute alumna, Dr Michelle Dickinson ('Nanogirl'), the sessions on solar cells and learning about 3-D printing.

MacDiarmid Institu

Annual Repor 2019

DiscoveryCamp alumni

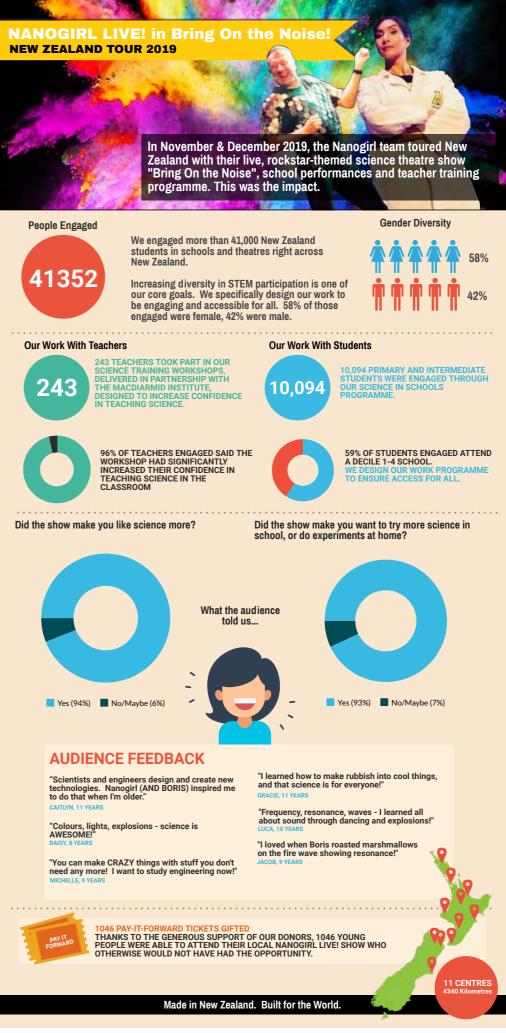
Entering into the university environment can be alienating for Māori and Pasifika students: connecting the students with researchers and with university communities that provide support has proven successful.

DiscoveryCamp alumna, Mariah McDonald (Ngāi Tahu, Tuahuriri), graduated with a degree in Engineering and she is now studying for her PhD in biomechanical engineering. She attended the camp in her final year of high school and said this allowed her to try out different things and helped her discover what she wanted to study.

"Before doing DiscoveryCamp I knew that I liked maths and science but I didn't even know what engineering was. And afterwards I knew for sure that was the career path I wanted to go down."

Māori and Pasifika continue to be under-represented across science and technology in New Zealand, so DiscoveryCamp intervenes early. To help with the transition into education, high school students are given a valuable opportunity to become familiar with university life, by attending lectures and living in residential halls.

"The fact that Māori and Pasfika students are underrepresented in education is a fault on society, it is not a fault on us. We are good enough to be doing this work and we should be doing it if we have a passion for it," Mariah says.


Instead of feeling frustrated over these statistics, DiscoveryCamp alumnus, Eden Skipper (Ngāi Tahu), said he used this as motivation to achieve great things. After completing a Bachelor of Science with Statistics, Eden says he encourages high school students to not be afraid to go to university, even if they are only one of a few Māori and Pasifika students in their class.

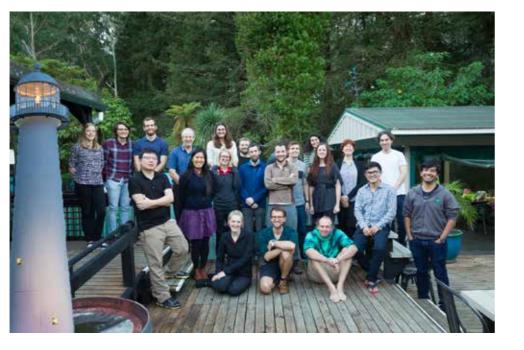
"Be brave and challenge the norm. Be proud of the fact that you are there, be proud of the fact that you are holding your whānau name."

EDEN - DISCOVERYCAMP ALUMNUS

MEDIA & PARTNERSHIP ENQUIRIES, PLEASE CONTACT INFO@NANOGIRU

Nanogirl

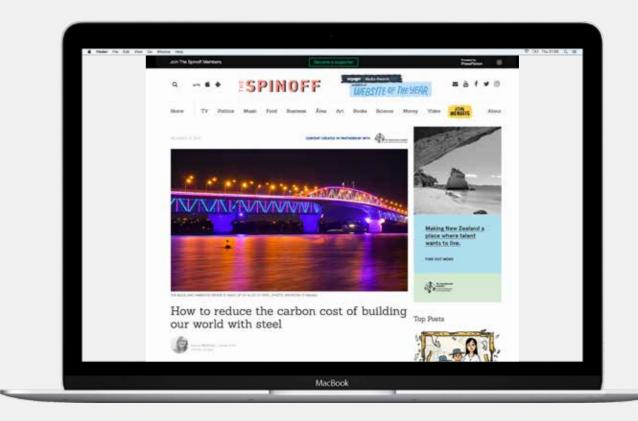
We again partnered with Nanogirl Labs to extend our programme into regional New Zealand, in partnership with their 2019 show 'Nanogirl Live! Bring on the Noise'. Our partnership also supported Nanogirl Labs to deliver their science training workshops to 243 teachers around the country.


Kōrero partnership with NZEI

In partnership with the New Zealand Education Institute (NZEI), we held Kōrero sessions around the country teaching nanoscience to early childhood and primary teachers.

Principal Investigator, Professor Eric Le Ru (Victoria University of Wellington), ran two 2-hour sessions in Wellington for 45 primary, intermediate and ECE school teachers.

Associate Investigator, Dr Anna Garden (University of Otago), ran a session in Dunedin for 15 teachers. Principal Investigator, Professor Paul Kruger (University of Canterbury), ran a session in Christchurch for 18 primary, intermediate and ECE school teachers.


Principal Investigator, Associate Professor Duncan McGillivray (University of Auckland), ran two sessions in Auckland for 20 teachers.

Cluster Hui

The Light and Optical Spectroscopy hui organised by Dr Baptiste Auguie took place in Kerikeri, Bay of Islands, with 23 attendees representing nine different groups, five universities, and a diverse mix of participants including students, postdoctoral fellows and investigators.

Partnering with The Spinoff

We continue our 3-year partnership with awardwinning The Spinoff website <u>www.thespinoff.co.nz</u> to get research stories to a nontraditional science audience. In 2019, 10 of the 89 stories on the Science page featured the work of MacDiarmid Institute researchers, and were viewed on average more than 2,400 times for longer than 6 minutes each view.

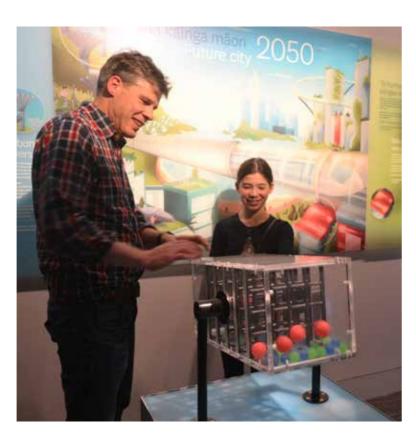
Mothers, daughters and overcoming bias in the science world Page views: **1,801** Ave. Time on page: **07:31** Facebook Reach: **38,603** How the fertiliser of the future could help save New Zealand's environment Page views: **3,268** Ave. Time on page: **08:31** Facebook Reach: **37,596**

Single use plastic is piling up. Is pyrolysis the answer? Page views: **2,612** Ave. Time on page: **06:08** Facebook reach: **11,390**

Building batteries that go beyond lithium Page views: **2,701** Ave. Time on page: **07:36**

WTF is molybdenum disulfide? An expert on why this nano-material matters Page views: **2,158** Ave. Time on page: **07:32** Facebook reach: **27,903** The camp where young Māori and Pasifika explore the wonders of science Page views: **2,856** Ave. Time on page: **03:22** Facebook reach: **43,928** and **199 clicks**

Converting nitrates: science's alternative solution for clean drinking water Page views: **1,615** Ave. Time on page: **04:55** Facebook reach: **10,198**


The cure for climate change could be in our own backyard Page views: **1,833** Ave. Time on page: **04:55** Facebook reach: **7,988** After decades of service, the lithium-ion battery has won a Nobel Prize Page views: **3,076** Ave. Time on page: **04:11** Facebook reach: **14,980**

How to make solar electricity cheap? Move light sideways Page views: **3,097** Ave. Time on page: **04:30** Facebook reach: **11,415**

Te Papa Nature Exhibition

We partnered with Te Papa Tongarewa to include future sustainability science in the national museum's new Te Taiao | Nature exhibition which opened in May 2019. Over 300,000 visitors saw the MacDiarmid Institute exhibit in the first five months of the display.

The new permanent exhibition explores the unique natural environment and highlights the innovative ways we are protecting it. Based on the work of scientists at the MacDiarmid Institute, new energy technologies that can capture carbon dioxide out of the air and new types of solar cells are on display as part of the climate change section of the exhibit.

"Our new partnership with the MacDiarmid Institute allows us to showcase some of New Zealand's leading research on materials science relating to building a more sustainable future."

DR DEAN PETERSON, DIRECTOR OF COLLECTIONS AND RESEARCH AT TE PAPA

"In the face of much negativity around climate change, it's important to maintain a sense of optimism that solutions may exist. These will be driven by investment in research."

INVESTIGATOR, PROFESSOR SHANE TELFER

He taka tākai hiko

Commentation property along the second second

An even of any other block in a sector and a sector of the sector of the sector and a sector of the sector of the sector dense of the sector of the sector of the sector dense of the sector of the sector of the sector dense of the sector of the sector of the sector dense of the sector of the sector of the sector dense of the sector of the sector of the sector dense of the sector of the sector of the sector dense of the sector of the sector of the sector dense of the sector of the sector

A DECEMBER OF THE OWNER OWNER OF THE OWNER OWNER

Solar roll

Statement Dariptics Statement

- Masterton)

- in my class. The kids loved the experiments and the microscopic camera was a hit!"(Pirinoa School, Wairarapa)

House of Science

As the first national partner of the House of Science, we sponsor the NanoChem box, one of the most requested boxes for teachers. We have 13 kits in circulation (with another one on order). In 2019, the NanoChem box has been in 210 classrooms, with 7,350 children engaging in nanoscience.

Student quotes:

• "It was so fun making the flubber. After I put the two things in the beaker I had to stir it. It was still wet but then after that it started to go slimy. I really liked making it because I have never done it before. I never wanted it to end."

"It smelt a bit stinky but I still loved it."

NANOCHEM KIT STUDENT

- "I really liked making the flubber because it was gooey. We needed to put in some blue glue and we also needed to add some clear liquid. We had to keep stirring it. It was fun to play with because when you put it in your hands it felt like
- - soft marshmallow. It smelt a bit stinky but I still loved it."
 - Teacher quotes:
 - "My class loved this kit and were very motivated! Such a great initiative."(Mangapapa School, Gisborne)
 - "This was a hot favourite

"Awesome kit!

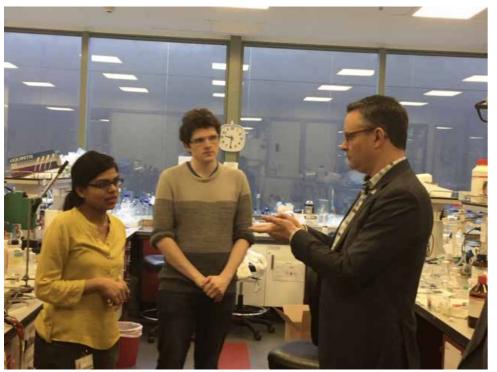
(TEACHER, OROUA DOWNS SCHOOL, HIMATANGI)

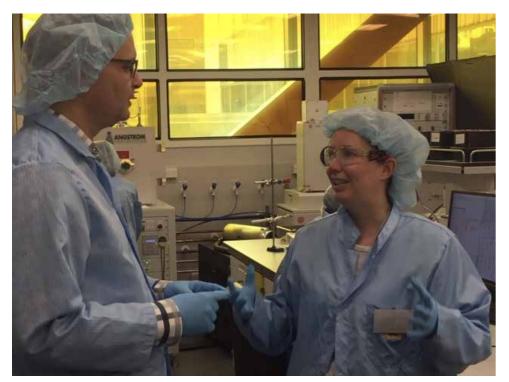
The kids loved it."

• "Kids loved making the flubber. We enjoyed discussing whether it was a solid or a liquid. We also discussed whether there was a physical change or a chemical change. It was great having all the equipment ready to go!" (Pirinoa School, Wairarapa)

"I have 7-year-olds running around talking about polymerisation and crystallisation and blowing their teachers away!"

TEACHER EAST BAY SCHOOL


• "Awesome kit! The kids loved it and it generated great discussion and ideas." (Oroua Downs School, Himatangi)


• "We had a really great week with the Nano science kit. Such a great resource! Cheers."(Kahutara School,

• "I have 7-year-olds running around talking about polymerisation and crystallisation and blowing their teachers away! So on behalf of all those schools who have had the pleasure to use the kit, and those waiting on their turn, thanks so much!" (East Bay School)

James Shaw lab visit

In September, Climate Change Minister, Hon James Shaw, checked out some of our climate mitigation materials research; new battery technologies, luminescent solar concentrators, printed photovoltaics, next generation computing devices, carbon capture research and materials for the hydrogen economy.

Inspiring the next generation of scientists and technologists

Throughout the year, our researchers took our sustainable innovation science to a range of STEM festivals across the country, including the Tauranga STEMfestival, the Accenture Girls in STEM showcase and the Nelson Inspire Festival. Our flexible solar cells. carbon-capture sponges (metal organic frameworks - MOFs) and solar concentrators were on display to engage and inspire a new generation of scientists and technologists, to show the difference students can make to sustainability and climate change if they continue to study STEM. We also hosted lab visits from 80 female secondary school students who won places in the Innovative Young Minds programme, where they also heard from women scientists about their journey into their career and their current research.

Mighty Small, **Mighty Bright**

In collaboration with the Museum of Transport and Technology (MOTAT), the Dodd-Walls Centre, and Otago Museum, we have been taking hi-tech stories to museums around the country.

"MOTAT's partnership with the MacDiarmid **Institute resulted** in a wonderful exhibition, bringing complex science to a broad audience."

REBECCA BRITT. EXHIBITIONS MANAGER MOTAT

The 'Mighty Small, Mighty Bright' travelling showcase is a hands-on exhibit that illustrates the journey of extraordinary science from the lab to New Zealand homes and businesses.

The exhibition kicked off at MOTAT in Auckland in May and then headed south to open at Te Manawa in Palmerston North in November.

perspectives.

biology."

MESA 2019

In its 9th year, the MacDiarmid **Emerging Scientists Association** (MESA) runs networking and training for all MacDiarmid Institute students and postdoctoral researchers. In 2019, the MESA executive was: David Perl (Chair), Tarek Kollmetz (Treasurer), Edoardo Galli (Secretary), Shalini Divya (Social Media Representative) and Nicola Altenhuber, Sam Brooke, Taniela Lolohea, Kira Pitman, and Sriram Sundaresan.

This year, the committee organised workshops on electrochemistry, writing and graphics. MESA members feed in information that decides the themes and locations of workshops and minimises wasteful travel. In particular, this year's committee focused on supporting the wellbeing of MESA members, including dedicating the first day of the Future Leaders Programme to host expert speakers to introduce wellbeing from a range of different

"MESA provided a clear way to engage with the community to build social, academic, and professional development support outside of

MACDIARMID STUDENT

4. Into the future.

During their time at the MacDiarmid Institute, our students are equipped not only with deep scientific knowledge but with leadership, communication and commercial skills. **Through our Future Leaders Programme,** industry connections and internships within the government and commercial sectors, we expose students to the government side of science funding and policy, as well as to the realities of the business world, including intellectual property, pitching and investment funding.

2019

Alumni survey

Informal survey of

MSc, PhD and Postdoctoral alumni who left the Institute since 2014

Employees in at least

separate NZ deep tech start-ups, including three Interface partners and four of our own spinouts

professional roles

are already either

company directors

or in 'senior'

cDiarmid Institut

We held our first Alumni networking event in October to bring our Wellington based alumni together with existing investigators, students and postdoctoral fellows to reconnect as whānau. The theme for the evening was "The Future of Work" as presented by our guest speakers, Professor Sally Davenport and Dr Andrew Chen.

"Excellent to see MacDiarmid backing up its push for alumni connections with such a strong presence and excellent speakers."

MACDIARMID INSTITUTE ALUMNUS

Our annual 'Future Leaders Programme' for our students and postdocs this year focused on wellbeing and communication. This two-day workshop for our emerging scientists is designed to prepare them for life after a PhD or Postdoctoral study. Each year the programme is focused around either science communication, presentation skills and leadership or entrepreneurship.

At the request of our student body MESA, we ran for the first time a workshop developing skills to manage wellbeing. This was facilitated by Nilima Chowdhury, a Psychology PhD candidate with expertise in mental illness and professional and gender identity. Within a safe environment, attendees learnt how to remain present and grounded during stressful situations, build resilience, and deal with imposter syndrome. The second day included a scientist communicators panel as well as workshops on writing technical papers, giving talks and making graphics and posters.

Future Leaders Programme

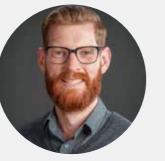
Sustainability report

As an Institute focused on materials for sustainability, we decided to take a good look at our own carbon footprint. We calculated the carbon footprint using the World Business Greenhouse Gas Protocol, assessing building electricity and gas usage, commuting habits, and laboratory electricity use. We found that (as expected), the vast majority of the carbon footprint of the Institute was determined to be due to air travel (89%). We plan to monitor our air travel and to also look at other ways to reduce the carbon footprint of the Institute.

2019

Business Scholarship recipients

In 2019, we again offered competitive business scholarships to our alumni and awarded the following:



Dr Lita Lee, PhD 2015: **Postgraduate Certificate** in Commercialisation and Entrepreneurship at the University of Auckland With this scholarship, Dr Lee (Senior Scientist Mint Innovation) hopes to gain a better understanding of the challenges involved in the commercialisation process. She's keen to be able to help start-up companies with their commercialisation journey.

Dr Amy Zheng, PhD 2017: **Postgraduate Certificate** in Commercialisation and Entrepreneurship at the University of Auckland Dr Zheng (Research Fellow, University of Auckland) plans to use this scholarship to gain practical tools and a solid commercialisation mindset. She is keen to pursue a longterm R&D and science-led commercialisation career with a focus on translating biomaterial research into products that can benefit human wellness and social wellbeing.

Our 2018 MacDiarmid Business Scholarship recipients reflect on their studies

Dr Eldon Tate, 2018 Business Scholarship recipient **"The Business** Scholarship opened up an amazing opportunity for me to upskill, helping me tackle the challenges I've been facing in start-up life."

Dr Sam Yu, 2018 Business Scholarship recipient **"Business is about** managing people, money and risks. Being able to balance these factors in a rapidly changing environment is the resilience we should all learn to build and strengthen."

Dr Akshita Wason, 2018 **Business Scholarship recipient** "The programme makes you view each idea through the lens of strategy, finance and risk - a mould required for any concept to be a commercial success."

Dr Hannah Zheng, 2018 **Business Scholarship recipient** "Studying business makes me reassess the way I approach my work. I have to think about science in a different way."

Government and industry **Internships**

Most science PhD graduates will not remain in academia. Many are looking to use their skills across a range of areas, including government and industry. 2019 saw the launch of the inaugural MacDiarmid Institute threemonth internships in government and industry. The internships cover the period from thesis handin, through to oral PhD exam.

"In March we were excited to launch our intern programme and have particularly enjoyed having our enthusiastic PhD graduates from the MacDiarmid Institute join us in the Office."

PRIME MINISTER'S CHIEF SCIENCE ADVISOR, PROFESSOR JULIET GERRARD

"Recruiting a summer intern into the team from **MacDiarmid has introduced** a new wave of energy and ideas into the project. We have been so impressed with Mohsen's work we are seeking to extend his contract. MacDiarmid Institute did an outstanding job to match the technical skills required for this project with the technical competencies of their interns."

KEVIN GUDMUNDSSON, MSL

Paths to policy

Good science and environmental policy making requires people within the policy system who understand the science system, and the science itself, and who have the deep analytic and data skills required to make good recommendations to government. With this in mind, we have this year supported 13 MacDiarmid Institute graduates into three-month internships within government - with seven graduates joining the Office of the Prime Minister's Chief Science Advisor (OPMCSA), four joining the Ministry for the Environment, one starting at MBIE and another with Dunedin City Council.

PMCSA Office

Odile Smits: Minimizing the carbon footprint by efficient electricity distribution and storage.

Ankita Gangotra: Equity, diversity and inclusion (EDI) policy options for Aotearoa New Zealand's science workforce.

Wayne Crump: The state of quantum computing in 2019, what the future might hold and what that means for Aotearoa New Zealand.

Zealand.

Akshita Wason: Rethinking plastic and diversity in education work stream.

"The internship at the **Measurement Standards** Laboratory of New Zealand (MSL) has led to a long term position for me at MSL." MOHSEN MADDAH

Georgina Shillito: Potential impact of current solar use on energy use and policy in New

Kyle Webster: The technological background of artificial intelligence and the long-term impacts of AI development on NZ society and policy.

Jono Barnsley: Insect decline and potential impacts for New Zealand industry and biodiversity.

Ministry for the Environment

Dani Metin: Developing processes and documentation primarily around the change to a code based, reproducible reporting platform.

Heather Jameson: Standardising data and enabling easier Treaty settlement environmental reporting.

Nishat Sultana: Joined the Strategy and Stewardship team to understand New Zealanders' perspective on ministry proposals related to environmental reporting, data science and Te Ao Māori.

Shota Shirai: Development and validation of R code used for analysing air quality data and reviewing analysed data and interpretation in Kaitaki survey.

Ministry of Business, **Innovation and Employment** Alexander Smith: International

trends, market opportunities, and New Zealand strengths and capabilities for clean energy.

Measurement Standards Laboratory (MSL)

Mohsen Maddah: The project was to automate the existing MSL mass comparators for calibrating industrial mass units that involved the design and development of the system hardware and software.

Dunedin City Council

Noah Hensley: Stormwater quality and supporting the drinking water treatment team.

Commercial

internships

MacDiarmid Institute students are

technical and R&D skills and we've

a high-quality resource for local

worked towards matching these

skills and the companies through

our internships. The internships

help students who have submitted

their PhD theses to find placements

that relate to their experience while

experience. We support companies

to find the right people as well as

sourcing funding from numerous

We aim to provide a wide range

of placements to ensure there's

something to suit everyone's needs

and have found both mature and

early stage companies are able to

benefit from the interns' placements.

companies needing advanced

1: Mint. Mint Innovation is a startup

company developing the ability to turn electronic waste into valuable raw materials, including gold. After raising \$5.2 million in late 2018, they have developed an industrial demonstration plant to refine their chemical and industrial processes and have needed robust technical capability to develop these innovative processes towards commercial scale. Mint are rapidly developing valuable industry hosting MacDiarmid Institute alumna, Loc Tran, following her PhD submission on methods to remove either nitrate or heavy funding sources, including our own. metals from water.

"Having Loc work with us as an intern has been very valuable and we are in the process of offering her a position at Mint once she has completed. If she accepts, we will have four PhD chemists on our staff who were trained through the MacDiarmid Institute."

DR OLLIE CRUSH (CSO, MINT INNOVATION)

The Ministry for the Environment internship has fast-tracked my career, helping me to immediately experience the science-policy interface that I had dreamt of exploring and allowing me to upskill rapidly in this area that I'm passionate about." HEATHER JAMESON

"I have been juggling scientific research and science policy on a weekly basis. The process has been enlightening." ANKITA GANGOTRA

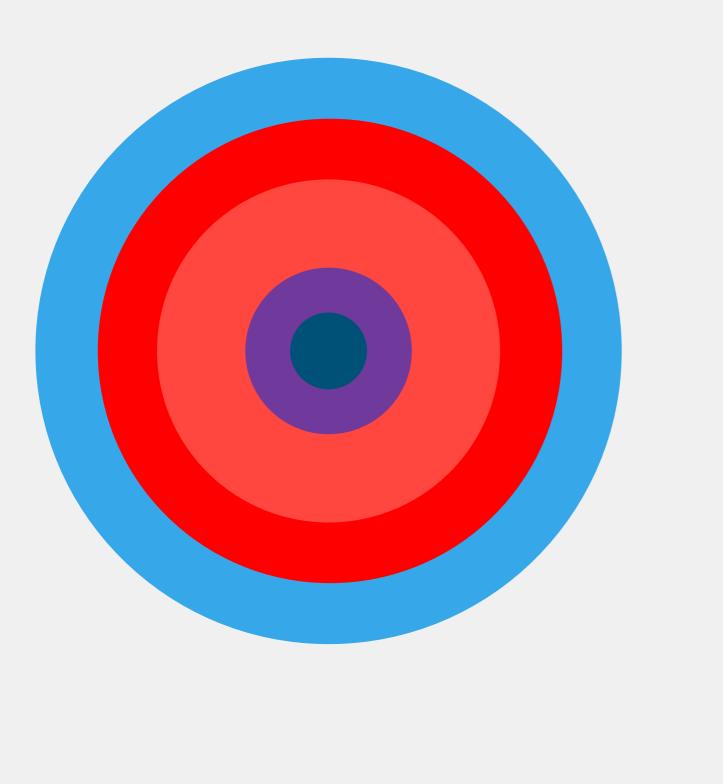
"The interns' work ethic, eagerness to learn and problem solving nature, is showcased by the innovative lens they've brought to our work environment." HUGO BLOOR, MFE

"This was completely unlike other science related work I have done which of itself gave rise to valuable insights on the role of science in our society." KYLE WEBSTER

"Thanks so much Kyle, for all your work and organisation of this massive topic and again to the MacDiarmid Institute and all the researchers and policy folk who invested time in helping Kyle straddle the sciencepolicy interface in an enormous topical area!" PRIME MINISTER'S CHIEF SCIENCE ADVISOR, PROFESSOR JULIET GERRARD

2: Matū.

investments in early-stage deep tech start-ups supported by an experienced scientific advisory board. They have an active intern programme upskilling recent graduates to work in the investment industry, a crucial need if New Zealand is to develop a large science-based economy. The firm has developed good links to the Māori economy, including through a partnership with FOMA Innovate and has an ethical investment policy, where the fund takes a long-term view on the impacts of their investments. There is a good match between Matū and the research and ethos of the MacDiarmid Institute with the long


Matū is a New Zealand VC firm

that makes active, syndicated

development cycles of deep tech, shared values, people development and recognition of the value of sustainability to New Zealand's economic future. Matū are hosting MacDiarmid Institute alumna, Dana Goodacre, with a background in analytical chemistry.

"Dana's excellent analytical abilities have helped the fund reach out to more researchers in the materials, additive manufacturing, and biochemistry fields. Her contributions to the team have been greatly valued, with both scientific expertise and strong communication skills."

DR ANDREW CHEN (VENTURE ASSOCIATE, MATŪ FUND)

5. Into the metrics.

Financials

Annual Report 2019

At a glance

	2018	2019
Core funding	8,150,408	8,847,015
Other funding (mainly interest income)	268,007	222,892
Total revenue	8,418,415	9,069,907
Salaries and salary related costs		
Director and Principal Investigators	854,688	814,090
Post-Doctoral Fellows	640,724	705,597
Research / Technical Assistants	225,487	222,852
Others	444,317	467,620
Total salaries and salary related costs	2,165,216	2,210,159
Other costs		
Overheads	1,893,583	2,407,636
Project Costs	1,823,281	2,789,634
Travel	549,967	462,915
Postgraduate Students	1,986,368	1,199,563
Total other costs	6,253,199	6,859,748
Total expenditure	8,418,415	9,069,907

Headcounts by category

Peer reviewed research outputs by type

Detailed category

Emeritus Investigators 20 Principal Investigators 33 Stakeholder Relations Partner Iwi 1 Associate Investigators 44 Postdoctoral researchers 125 Students 348

Total 571

Journal articles 401 Book chapters 4 Conference papers 18 Books 1 Keynote speakers and invited addresses 40

Total 464

Board, executive, staff and students

Governance Representative Board

Paul Atkins Chair of the Board

Professor Richard Blaikie Deputy Vice-Chancellor, Research & Enterprise University of Otago

Will Charles Executive Director, Technology Development, UniServices University of Auckland

Professor Don Cleland Professor of Process Engineering Massey University

Heather Deacon* General Manager - Research and Technical Services Operation, Māori Economy and Programmes Callaghan Innovation

Professor David Harper* Acting Pro Vice-Chancellor Science, Engineering, Architecture & Design Victoria University of Wellington

Professor Wendy Lawson Pro Vice-Chancellor Science University of Canterbury

Joe Manning Head of Department - Materials and Air **GNS** Science

Hēmi Rolleston* General Manager Māori Forestry Futures Scion

Geoff Todd Managing Director, VicLink Victoria University of Wellington

Professor Mike Wilson* Pro Vice-Chancellor Science, Engineering, Architecture & Design Victoria University of Wellington

*Partial year

Ex-Officio

Associate Professor Nicola Gaston Co-Director, MacDiarmid Institute University of Auckland

Professor Justin Hodgkiss Co-Director, MacDiarmid Institute Victoria University of Wellington

Associate Professor Geoff Willmott Deputy Director Commercialisation and Industry Engagement, MacDiarmid Institute University of Auckland

Professor Paul Kruger Deputy Director Stakeholder Engagement, MacDiarmid Institute University of Canterbury

Associate Professor Carla Meladandri Science Executive Representative, MacDiarmid Institute University of Otago

Catherine Gibbs Centre Manager, MacDiarmid Institute Victoria University of Wellington

Rosie Wayte* Administrator, MacDiarmid Institute Minute-taker Victoria University of Wellington

Carol Wheatley* Administrator, MacDiarmid Institute Minute-taker Victoria University of Wellington

*Partial year

Industry Advisory Group

Paul Adams Chairperson & Chief Executive Officer EverEdge IP

Simon Arnold Managing Director Arnold.co.nz - Investing with Science Part-time CEO of NZ's National Energy Research Institute

Dr Andrew Coy Chief Executive Officer Magritek

Suse Reynolds Executive Director The Angel Association New Zealand Board member of Wellington region's Angel HQ

Greg Shanahan Managing Director & Co-founder Veriphi and Founder of the Technology Investment Network

Dr Shaun Tan Head of Technology Lanaco

Dr Andrew West Chairman Aquafortus General Partner of Matu

International Science Advisory Board

Professor Sir Richard Friend Cavendish Professor of Physics University of Cambridge, UK Physics of energy materials, condensed matter

Professor Justin Gooding* Scientia Professo Founding Co-director of The Australian Centre for NanoMedicine University of New South Wales, Australia Nano-medicine and electrochemistry

Dr Anita Hill* Chief Research Scientist, Future Industries CSIRO, Australia Porous materials

Professor Wilhelm Huck* Professor of Chemistry, Institute for Molecules and Materials Radboud University, Netherlands Artificial cells

Professor Michael Kellv* Prince Phillip Professor of Technology University of Cambridge, UK Electro-optic materials and devices

Professor Jeffery Long* Professor of Chemical & Biomolecular Engineering University of California, Berkeley, USA Inorganic and solid state chemistry

Professor Tomonobu Nakayama Deputy Director, Administrative Director, Group Leader of WPI-MANA Deputy Director of ICYS Professor at the University of Tsukuba National Institute for Materials Science | NIMS International Center for Materials Nanoarchitectonics (MANA) University of Tsukuba, Japan Surface physics and chemistry, nanotechnology, nanobioscience

Professor Daniel Nocera Patterson Rockwood Professor of Energy Harvard University, USA Chemistry of renewal energy

Into the metric

90

Annual Repor 2019

Professor Teri Odom*

Associate Chair of the Department of Chemistry Charles E. and Emma H. Morrison Professor Northwestern University, IL, USA Designing structured nanoscale materials with exceptional properties

Professor Ivan Parkin Dean of Mathematical and Physical Sciences Faculty University College London, UK Nanomaterials

Professor Annie Powell* Professor of Inorganic Chemistry, Institute of Chemistry and Institute of Nanotechnology Karlsruhe Institute of Technology Germany Molecular materials

Dr Charles Royal* Independent researcher and consultant New Zealand Mātauranga Māori

Professor Thomas Schimmel*

Professor Michelle Simmons

Professor Matt Trau

diagnostics

*Partial year

Dr David Williams

Director, Institute of Applied Physics Head of Department, Institute of Nanotechnology Karlsruhe Institute of Technology Institute of Applied Physics and Institute of Nanotechnology Germany Scanning probe microscopy and nanolithography

Quantum computing, condensed matter physics

Professor of Chemistry, University of Queensland

Institute for Bioengineering and Nanotechnology

Nanoscience, nanotechnology, and molecular

Deputy Director and co-founder, Australian

University of Queensland, Australia

Chief Research Scientist and Laboratory

Manager, Hitachi Cambridge Laboratory

University of Cambridge, UK

Science Executive

University of Auckland

Materials for computing

Director, Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology Laureate Fellow Scientia Professor of Physics University of New South Wales, Australia

> Science Leader: Functional Nanostructures Massey University

Ex-Officio

Catherine Gibbs

Victoria University of Wellington

Kevin Sheehy* Commercialisation Manager, MacDiarmid Institute Victoria University of Wellington

Rosie Wavte* Administrator, MacDiarmid Institute Minute-taker

Carol Wheatley* Administrator, MacDiarmid Institute Victoria University of Wellington

Professor Justin Hodgkiss Co-Director, MacDiarmid Institute Victoria University of Wellington

Associate Professor Nicola Gaston

Co-Director, MacDiarmid Institute

Deputy Director Stakeholder Engagement University of Canterbury Associate Professor Geoff Willmott

Engagement University of Auckland

Professor Paul Kruger**

Professor Simon Brown Science Leader: Tomorrow's Electronic Devices University of Canterbury

Dr Renee Goreham* Associate Investigator Representative Victoria University of Wellington

Dr Pauline Harris* Māori Research Representative Victoria University of Wellington

Associate Professor Carla Meladandri Principal Investigator Representative University of Otago

David Perl MESA Chairperson Massey University

Dr Natalie Plank Principal Investigator Representative Victoria University of Wellington

Associate Professor Geoffrey Waterhouse* Science Leader: Energy University of Auckland

Dr Catherine Whitbv* Associate Investigator Representative Massey University

Professor Bill (Martin) Williams

Centre Manager, MacDiarmid Institute

Victoria University of Wellington

Minute-taker

Vanessa Young

Strategic Engagement Manager, MacDiarmid Institute Victoria University of Wellington

Deputy Director Commercialisation and Industry

*Partial vear ** Change in status from Science Leader: Energy to Deputy Director

MacDiarmid Emerging Scientist Association (MESA) 2019

David Perl Chair PhD Student Massey University

Edoardo Galli Secretary

PhD Student University of Canterbury

Tarek Kollmetz Treasurer PhD Student University of Auckland

Shalini Divya Social Media Representative PhD Student Victoria University of Wellington

Nicola Altenhuber Centre Representative PhD Student University of Canterbury

Sam Brooke Centre Representative PhD Student Massey University

Taniela Lolohea Centre Representative PhD Student University of Auckland

Kira Pitman Centre Representative MSc Student Victoria University of Wellington

Sririam Sundaresan Centre Representative PhD Student University of Otago

Principal Investigators (33)

Maan Alkaisi Martin Allen Sally Brooker Penny Brothers Simon Brown Alison Downard Nicola Gaston Keith Gordon Michele Governale Simon Granville Pauline Harris Justin Hodgkiss Derek Kawiti John Kennedy Paul Kruger* Eric Le Ru Nigel Lucas Jenny Malmström Duncan McGillivray Carla Meledandri Franck Natali*** Thomas Nann*** Volker Nock Natalie Plank Craig Rofe Ben Ruck Shane Telfer Jadranka Travas-Sejdic Geoff Waterhouse** Grant Williams Martin (Bill) Williams Geoff Willmott Ulrich Zuelicke * Indicates pro-rata status shift from Science Leader to DD ** Indicates pro-rata status shift from PI to Science Leader **Indicates pro-rata status shift from DD to PI **** Partial year - left the MI in 2019

Stakeholder Relations Partner Iwi (1)

Diane Bradshaw

Associate Investigators (44)

Eva Anton* Baptiste Auguie Ebubekir (Ebu) Avci* David Barker Saurabh Bose Margaret Brimble Philip Brydon Chris Bumby Peng Cao* Damian Carder Jack Chen* Shen Chong Matthew Cowan James Crowley Nathaniel Davis* Renwick Dobson Laura Domigan Guy Dubuis

Christopher Fitchett Robin Fulton Petrik Galvosas Anna Garden Vladimir Golovko Renee Goreham* Shaun Hendy Bridget Ingham** Geoff Jameson Marcus Jones* Vedran Jovic* Erin Leitao Jerome Leveneur Ben Mallett Aaron Marshall Michel Nieuwoudt Emilia Nowak Elke Pahl Viji Sarojini Tilo Söhnel Krista Steenbergen* James Storey Charles Unsworth Mark Waterland Catherine Whitby Stuart Wimbush *Partial year - new Associate Investigator in 2019 **Partial year – left the MI in 2019

Emeritus Investigators (20)

Richard Blaikie Ian Brown Bob Buckley Sally Davenport John Evans* Juliet Gerrard Simon Hall Jim Johnston Alan Kaiser Tim Kemmitt Ken MacKenzie Andreas Markwitz Jim Metson Roger Reeves Mike Reid Cather Simpson Jeff Tallon Richard Tilley .Joe Trodahl David Williams

*Partial year - retired in 2019

MI Students in 2019 (348)

Mark

Amanda

Queenie

Matthew

Diane

Tane

Xize

Tim

Shailja

Mathew

William

Ahmed

Yuri

Jake

Jing

Max

Ze

Barath

Natalie

Peng (Tony)

Tuan Minh

Matthew

Hannah

Michael

Jessie

Madhu

Hamesh

Fabien

Kira

Helen

Jonathan

Rosanna

Vaibhav

Arnold

Anna

Nicholas

Annabella

Pui Yan

Winter

Aran

Nic

Eleonore

Bangwei

Matthew

Oituo

MSc (45) Bagley Berger Brewster Butler Chen Chen Cox Craig Data Denys Ding Doonan Elashkar Filatov Hardy He Ingle Kuang Kumar Lagesse Liu Lofroth Luong Matthews Newton-Vesty Owen Panjeta Patel Payet Pike Pitman Prime Ring Rov Sharma Singh Smith Symon Tang Thomas Tolentino Warren Weaver Wild Xia PhD (303) Abudayyeh

Agnieray

Akogun

Alkas

Allam

Anand

Andrew

Arshad

Ashraf

Ashforth

Anil

Altenhuber

Ahangarpour

Abdullah Heiana Marzieh Fola Adil Ravi Tej Nicola Aljo Phillippa-Kate (Kate) Anusree Faiza Simon Jesna

Victoria University of Wellington

Victoria University of Wellington University of Auckland Victoria University of Wellington University of Auckland University of Auckland University of Otago Massey University University of Auckland University of Otago University of Canterbury Victoria University of Wellington University of Canterbury University of Canterbury Victoria University of Wellington Massey University Victoria University of Wellington University of Auckland Massey University University of Otago University of Auckland Massey University University of Auckland University of Auckland University of Canterbury Massey University Auckland University of Technology University of Auckland University of Canterbury University of Canterbury Victoria University of Wellington University of Otago University of Canterbury University of Auckland Victoria University of Wellington University of Auckland University of Canterbury Massey University University of Auckland University of Canterbury Auckland University of Technology University of Canterbury University of Canterbury University of Auckland University of Auckland University of Otago University of Auckland University of Auckland University of Otago Massey University Auckland University of Technology University of Canterbury University of Auckland Massey University University of Auckland University of Otago University of Auckland University of Auckland

Genevieve Fitzjames

Professional Staff

Administrator, MacDiarmid Institute University of Auckland

Catherine Gibbs

Centre Manager, MacDiarmid Institute Victoria University of Wellington

Alice Girton*

Administrator, MacDiarmid Institute Victoria University of Wellington

Katy Groom

Communications Support, MacDiarmid Institute Victoria University of Wellington

Kevin Sheehy*

Commercialisation Manager, MacDiarmid Institute Victoria University of Wellington

Gary Turner

Research Engineer University to Canterbury

Rosie Wayte* Administrator, MacDiarmid Institute

Victoria University of Wellington Carol Wheatley*

Administrator, MacDiarmid Institute Victoria University of Wellington

Vanessa Young

Strategic Engagement Manager, MacDiarmid Institute Victoria University of Wellington *Partial year

Annual Repor 2019

Auer	Bernhard
Ayed	Zeineb
Ayupova	Deanna
Bandara	Nisansala
Bason	Nic
Beikzadeh Ghelejlou	Sara
Bell-Tyler	Joseph
Bernach	Michal
Bhugra	Vaibhav
Bioletti	Gabriel
Bjareborn	Oscar
Board	Amanda
Bodman	Samantha
Bondi	Luca
Borah	Rohan Nicola
Brant Brett	Matthew
Brooke	Sam
Brooks	Justin (Gus)
Broom	Matheu
Browning	Leo
Camacho	Luis
Canever	Nicolo
Carroll	Liam
Casey-Stevens	Caitlin
Cassie	Erica
Chan	Andrew
Chandrabose	Sreelakshmi
Cheema	Jamal
Chen	Xiaohan
Chen	Linda
Choi Chou dhuur	Hans
Choudhury Christopher	Minati Tim
Cink	Ruth
Cleland	Josiah
Clyde	Daniel
Conroy	Francesca
Coombes	David
Cornelio	Rani
Cryer	Matthew
Currie	Michael
Davies	James
Devese	Samuel
Divya	Shalini
Dong Dosado	Yusong
Durrani	Aubrey Madeeha
Earl	Andrew
Emeny	Chrissy
Fadakar	Farzaneh
Ferris	Shaun
Fisher	Ewan
Francis	Adam
Franke	Christine
Freeman	Jared
Gaar	Jakob
Galli	Eduardo
Gangotra	Ankita
Ghosh	Sunandita
Giglio	Cannon
Gilkes	Jenna
Gilmour	James

Massey University Victoria University of Wellington Victoria University of Wellington Massey University University of Canterbury University of Auckland University of Auckland University of Canterbury Victoria University of Wellington Victoria University of Wellington Victoria University of Wellington University of Canterbury University of Canterbury University of Otago Victoria University of Wellington University of Auckland Victoria University of Wellington Massey University Victoria University of Wellington University of Auckland Victoria University of Wellington University of Auckland Victoria University of Wellington University of Canterbury University of Otago Victoria University of Wellington University of Auckland Victoria University of Wellington University of Auckland Victoria University of Wellington University of Canterbury University of Auckland University of Otago University of Auckland University of Auckland Massey University University of Auckland University of Auckland University of Canterbury Massey University Victoria University of Wellington University of Canterbury University of Canterbury Victoria University of Wellington Victoria University of Wellington University of Auckland University of Auckland University of Auckland University of Auckland University of Canterbury Victoria University of Wellington University of Auckland University of Auckland

Victoria University of Wellington

University of Canterbury

University of Auckland

University of Auckland

University of Canterbury

University of Auckland

University of Auckland

University of Auckland

University of Canterbury

University of Auckland

Goodacre Dana Grant Philip Grant Thomas Guehne Robin G110 Lun Gupta Arka Hackett Alissa Hall Thomas Hamonnet Johan Нарре Erica Harvev-Reid Nathan Haverkate Natalie Hayali Ahmed Hedley Gavin Hermanspahn Lily Hermant Yann **Hindcapie Florez** Edison Holmes-Hewett Will Horne Chris Horocek-Glading Miriana Hosking Peter Caixia Hou Howard Ben Howard Georgina Hughson Fraser Hung Jenny Ilina Aleksandra Itumoh Emeka Jellev Rebecca Ji Junghun Joseph Delsa Kanyan Deepika Karabulut Fabrice Kariman Asad Kasim Johanes Khadka Roshan Khalil Bushra Khan Wasim Kihara Shinii Kleinjan (nee Bakker) Carline Ko Jason Kollmetz Tarek Kotulla Markus Kovalenko Nadija Kumar Saawan Kumar Vipin Lacalendola Nicola Lambie Stephanie Landon-Lane Leatham Latif Qaisar Laufersky Geoffry Le Ster Maxime Subo Lee Li Sheung Yin (Tony) Li Si Li Yang Lisboa Lynn Stephen Lo Lofroth Matthew Aaron Lolohea Taniela Love Michael Lu Ben

Lu

Ziqi (Michael)

University of Auckland Massev University University of Otago Massey University University of Otago Massey University Massey University University of Otago Massey University

University of Auckland University of Auckland Victoria University of Wellington University of Auckland University of Auckland University of Canterbury Victoria University of Wellington University of Canterbury University of Auckland University of Canterbury University of Canterbury University of Canterbury University of Auckland Victoria University of Wellington University of Canterbury University of Auckland University of Auckland University of Canterbury University of Canterbury University of Auckland Victoria University of Wellington University of Auckland Victoria University of Wellington University of Auckland University of Canterbury University of Auckland University of Auckland University of Auckland University of Canterbury University of Auckland University of Canterbury University of Auckland University of Auckland Victoria University of Wellington University of Auckland University of Canterbury University of Auckland Victoria University of Wellington University of Canterbury University of Auckland University of Auckland University of Auckland University of Auckland University of Canterbury University of Auckland University of Auckland

Lucarelli Luong Lya Mackercher Maddah Maity Majic Makinde Mallinson Manuguri Mao Mapley **Marone-Hitz Martin Treceno** Mataira-Cole Mautner McGowan Meffan Menke Metin Miller Mirzakhani Mohandas Mohd Darbi Molloy Monteiro Moteshakeri Munro Murugathas Naiva Nalumaga Narasimhan Nawaz Neiman Nesbitt Nguyen Nott Onal Onvema Opiyo **Orcheston-Findlay** Ortega Pandian Park Patel Paulin Pearl Perl Peterson Prabowo Pradhan Prasad Pu Pugliese Quach **Rabanzo-Castillo** Raichakit Ramamirtham Ramkrishna Randall Rani Rees Rehan

Valentina Tuan Minh Crystal Hannah Mohsen Tanmay Matt Zainab Joshua Sesha Yubing Joseph Ombéline Samuel Ratu Ira Nathan John Claude Henri Danielle Jackson Sara Nimisha Nur Maizura Ellen Isabela Mahsa Ben Thanihaichelvan (Selvan) Mohinder Hellen Badri Narayanan Tehreema Alex Sam Hong Phan (Jenna) Thomas Sevgi Chikwzie George Louise Kenneth Santhosh Kumar Kun Woo (Woo) Sneh Emily Essie David Danielle Sigit Susav Shyamal Yuguang Silvina Megan Kristel Mae Urawadee Sashikumar Mandal George Aakanksha Shaun

Muhammad (Rehan)

University of Auckland University of Auckland University of Auckland University of Canterbury Victoria University of Wellington Victoria University of Wellington Victoria University of Wellington University of Auckland University of Canterbury University of Auckland University of Auckland University of Otago University of Otago University of Canterbury Victoria University of Wellington University of Auckland University of Auckland University of Canterbury University of Otago University of Auckland Victoria University of Wellington University of Canterbury Massey University University of Auckland Victoria University of Wellington University of Auckland University of Auckland Massey University Victoria University of Wellington University of Auckland Victoria University of Wellington University of Auckland Victoria University of Wellington University of Canterbury University of Canterbury Victoria University of Wellington Victoria University of Wellington University of Canterbury University of Canterbury University of Auckland University of Canterbury University of Otago University of Auckland Massey University University of Auckland Victoria University of Wellington Massey University Victoria University of Wellington University of Auckland Victoria University of Wellington University of Auckland University of Auckland University of Auckland Massey University University of Otago University of Auckland University of Auckland University of Auckland Massey University

Reis Ren Ridings Ross Ruffman Safaei Sina Salehitaleghani Sarwar Savoie Schroeder Schuvt Schweig Scott Sen Service Erin Sester Shaib Ali Sharma Shashidar Sheikholeslami Sina Shepperson Shillito Shirai Shoiaei Siamaki Singh Singh Siu Smith Smith Smits Solís Muñana Song Xin Spasovski Kai Steinmetz Stevenson Sturov Sultana Sun Sundaresan Suschke Sutton Taheri Oazvini Taleshiahangari Tamming Tan Tang Tesana Thompson Thorn Ting Tollemache Tran Loc Twidle Uhrig Ullstad Vadakkedath Van Hilst Vargas Vasdev Vella Joe Vvborna

Wagner

Miguel Zhijun (Chloe) Kannan Daniel Charlie Sara Mian Makhdoom (Mak) Maxime Kathryn .Joseph Michael Jonty Anindita Clement Shailendra Vinay Oscar Georgina Shota Maryam Mohammad Harshpreet Sandhya Christy Alexander Jordan Odile Pablo Martin Sarah Efim Nishat Yiling Sriram Konrad Joshua Omid Hani Ronnie Shi Min Chhayly Siriluck Kadin Karen Sheng Hao (Matthew) Cherie Andrew David Felicia Praveen Ouinn Matheus Roan Natalija Isabella

University of Canterbury University of Otago Massey University University of Otago University of Otago Massey University University of Otago University of Otago

Auckland University of Technology University of Auckland University of Auckland University of Canterbury University of Canterbury Victoria University of Wellington Victoria University of Wellington Victoria University of Wellington University of Canterbury Victoria University of Wellington Victoria University of Wellington Victoria University of Wellington Victoria University of Wellington University of Canterbury University of Auckland University of Auckland University of Auckland University of Canterbury University of Canterbury Victoria University of Wellington University of Auckland University of Auckland University of Auckland Auckland University of Technology University of Auckland University of Auckland University of Auckland Victoria University of Wellington Victoria University of Wellington University of Auckland University of Canterbury Victoria University of Wellington University of Canterbury Victoria University of Wellington University of Auckland Victoria University of Wellington University of Canterbury Victoria University of Wellington Victoria University of Wellington University of Auckland University of Auckland Victoria University of Wellington University of Auckland Robinson Research Institute Victoria University of Wellington University of Auckland University of Auckland University of Auckland University of Auckland Victoria University of Wellington

MI Postdoctoral Researchers & RAs in 2019 (125)

Wan Ziyao Wang Jie Wang Min Wang Qing Wang Xindi (Andy) Yi Wang Wang Yuxin Wang Zifei Watkin Serena Watkin Serena Weal Geoffrey Webster Kyle Westberry Benjamin Wildervanck Martijn Williams Elyse Wilson Ben Wong Andy Wong Jin Xiang Wood David Wu Jiazun Wu Ting Xu Buzhe Xu Guangyuan (Sam) Xu Xiaoyi (Joy) Yang Mingrui (Ray) Yang Tingxuan Ye Liu (Yasmin) Ye Piao Yim Victor Yudhipratama Indra Zhang Ao Zhang Hongzhou Zhang Karl Zhang Peikai Zhang Wen Zhang Ethan Zhang Yao Huihua Zhoiu

University of Auckland Victoria University of Wellington University of Auckland University of Canterbury University of Canterbury University of Otago University of Auckland Massey University University of Auckland University of Auckland University of Canterbury University of Auckland Massey University University of Canterbury Victoria University of Wellington University of Canterbury University of Auckland University of Auckland University of Auckland Massey University University of Auckland Victoria University of Wellington University of Auckland University of Auckland University of Auckland Victoria University of Wellington University of Auckland University of Auckland University of Auckland University of Auckland Victoria University of Wellington Victoria University of Wellington University of Auckland

Postdocs (81) Acharya	Susant	Unive
Akbarinejad	Alireza	Unive
Anton	Eva	Victo
Arif	Tanzeel	Victo
Baek	Paul	Unive
Balzan	Miguel	Unive
Bodman	Samantha	Unive
Bose	Saurabh	Unive
Calvert	Matthew	Unive
Cameron	Alan	Unive
Cavanagh	David	Unive
Chalard	Anaïs	Unive
Chan	Eddie	Unive
han	Jay	Victo
hen	Kai	Victo
hen	Wan-Ting	Unive
ink	Ruth	Unive
lements	John	Mass
ornuault	Valerie	Mass
otton	Gemma	Univ
avison	Emma	Unive
Ding	Xiaobo	Unive
olamore	Fabian	Unive
alconer	Jonathan	Unive
urkert	Daniel	Unive
Shaus	Zahraa Al	Unive
rand	Johan	Victo
arper	Andrew	Unive
Iashemi	Azadeh	Unive
layat	Muhammad Dilawer (Dilawer)	Unive
Iealy	Colm	Unive
Ioltkamp	Hannah	Unive
lume	Paul	Victo
ammermeier	Michael	Victo
laur	Manmeet	Unive
Kavianinia -	Iman	Unive
(ee	Seyoung	Unive
Kurian	Mima	Victo
.efebvre	Denis	Victo
Li	Freda	Unive
owrey	Sam	Unive
Macreadie	Lauren	Mass
Maerkl	Tobias	Unive
Martinez Gazoni	Rodrigo	Unive
Menges	Julian	Unive
Minnee	Thomas	Unive
Monahan	Nicholas	Victo
Mowla Nam	Alireza	Unive
vam North	Seong Rachel	Unive
vortn Vovikova	Nina	Unive
Patil	Komal	Unive Unive
	Lisa	
Pilkington		Unive
Preston Price	Daniel Mike	Unive
Rennison		Victo
	David	Unive
Rodriguez Jimenez	Santiago	Unive
Rodriguez-Otazo	Mariela	Mass
Salkeld (nee Hyland) Schebarchov	Alana	Unive
Schedarchov Scott	Dmitri Havley	Victo
Scott	Hayley Christopher	Unive Unive
val	Christophet	UIIIV

versity of Canterbury versity of Auckland oria University of Wellington oria University of Wellington versity of Auckland versity of Auckland versity of Canterbury versity of Canterbury versity of Auckland versity of Auckland versity of Otago ersity of Auckland versity of Auckland oria University of Wellington oria University of Wellington versity of Auckland versity of Auckland sey University sey University versity of Otago versity of Auckland ersity of Auckland versity of Canterbury versity of Otago versity of Auckland versity of Auckland oria University of Wellington versity of Auckland versity of Canterbury versity of Auckland versity of Canterbury versity of Auckland oria University of Wellington oria University of Wellington versity of Auckland versity of Auckland versity of Auckland oria University of Wellington oria University of Wellington versity of Auckland versity of Otago sey University versity of Canterbury versity of Canterbury versity of Canterbury versity of Auckland oria University of Wellington versity of Auckland versity of Auckland versity of Canterbury versity of Auckland ersity of Canterbury versity of Auckland versity of Canterbury oria University of Wellington versity of Auckland versity of Otago sey University versity of Canterbury oria University of Wellington versity of Canterbury University of Auckland

Sikorska Soffe Sommerville Sparrow Steenbergen Stubbing Sun-Waterhouse Swain Тау Ullah Van der Heijden Ward Weissert Wells Williams Wilson Yang Yin Zeng

RAs (44)

Aguergaray Akbarinejad Alkas Arena Bason Bennington Brind Chen Chen Deijs Falconer Findlay* Gangotra Gillard Gilmour Glasson Hernandez Huang Huntington Irani .Jia Karabulut Kolathodi Lambie* Laufersky* Lu Manuguri Maslova Munro Najafabadi Opiyo **Orcheston-Findlay** Robinson Siow Sodavaram* Taleshiahangari Tayagui Thompson Tollemache Varnava* White Woolly Xu Zhang

Rebecca Dongxiao Frederick (Steve) Geoffrey Sunghyun Hang (Ben) Chunyan

Celina

Walter

Kevin

Krista

Louise

Jon

Aaron

Rifat

Rob

Lena

Zoe

Claude

Alireza

Adil

Nic

Giada

Michael

Thomasin

Wan-Ting

Queenie

Jonathan

James Alan

Sjoerd

Ankita

Rachel

James

Judith

Pablo

Jacob

Amir

Vincent

Fabrice

Stephanie

Benjamin

Atefeh Fazel

Geoffry

Sesha

Kate

Ben

George

Louise

John

Hani

Ayelen

Kadin

Cherie

Joni

Ethan

Buzhe

Allan

indicates held more than one RA post

Kyriakos

Andrew

Nireekshan

Muhamed Shareef (Shareef)

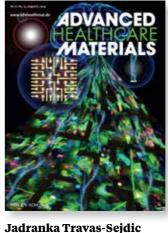
Saifang

Nadine

University of Auckland University of Canterbury Victoria University of Wellington University of Auckland Victoria University of Wellington University of Auckland University of Auckland University of Auckland University of Otago Victoria University of Wellington University of Auckland Massey University University of Auckland Massey University Victoria University of Wellington

University of Auckland University of Auckland Massev University Auckland University of Technology University of Canterbury University of Otago University of Otago University of Auckland University of Auckland University of Auckland MacDiarmid Institute/VUW University of Otago University of Auckland University of Auckland Victoria University of Wellington University of Auckland Massey University University of Auckland Victoria University of Wellington Massey University University of Canterbury University of Otago University of Auckland University of Otago Victoria University of Wellington University of Auckland University of Auckland Massey University Massey University Victoria University of Wellington University of Auckland University of Canterbury Victoria University of Wellington University of Auckland Victoria University of Wellington University of Canterbury Univesity of Canterbury Victoria University of Wellington University of Auckland University of Auckland University of Auckland Victoria University of Wellington University of Auckland University of Auckland

Journal covers



Sally Brooker Guest editor for Special Issue: Chemistry in New Zealand Chemistry - An Asian Journal 14, 1084-1303 (2019)

Sally Brooker and George Kostakis Modern coordination chemistry Dalton Transactions 48, 15318-15320 (2019)

CHEMISTRY A European Journal

Margaret Brimble and coworkers

A Versatile Boc Solid Phase Synthesis of Daptomycin and Analogues using Site Specific, On-resin Ozonolysis to Install the Kynurenine Residue Chemistry: A European Journal 25, 14101-14107 (2019)

and co-workers Neural Tissue Engineering:

Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation Advanced Healthcare Materials 8, 1970062 (2019)

Into the metric 100

Margaret Brimble and coworkers

Synthesis of Endolides A and B; Naturally Occurring N-Methylated Cyclic Tetrapeptides *MedChemComm* **10**, 693-698 (2019)

AUTHORS	TITLE	JOURNAL
Pilkington, L. I., Wagoner, J., Kline, T., Polyak, S. J., Barker, D.	1,4-Benzodioxane Lignans: An Efficient, Asymmetric Synthesis of Flavonolignans and Study of Neolignan Cytotoxicity and Antiviral Profiles.	Journal of Natural Products 81 , 2630-2637, 2018
Fiedler, H., Gupta, P., Kennedy, J., Markwitz, A.	28Si+ ion beams from Penning ion source based implanter systems for near-surface isotopic purification of silicon.	Review of Scientific Instruments 89 , 2018
Wood, J. M., Furkert, D. P., Brimble, M. A.	2-Formylpyrrole Natural Products: Origin, Structural Diversity, Bioactivity and Synthesis.	Natural Product Reports 36 , 289-306, 2019
Holmes-Hewett, W. F., Buckley, R. G., Ruck, B. J., Natali, F., Trodahl, H. J.	4f conduction in the magnetic semiconductor NdN.	Physical Review B 100, 2019
Pilkington, L. I., Yang, X., Liu, MW., Hemar, Y., Brimble, M. A. , Reynisson, J.	A Chemometric Analysis of Compounds from Native New Zealand Medicinal Flora.	Chemistry - An Asian Journal 14 , 1117-1127, 2019
Freeman, J. L., Furkert, D. P., Brimble, M. A.	A Chiral Auxiliary-Based Synthesis of the C5-C17 trans-Decalin Framework of Anthracimycin.	Organic Chemistry Frontiers 6 , 2954-2963, 2019
Deed, R.C., Pilkington, L.I., Herbst-Johnstone, M., Miskelly, G.M., Barker, D ., Fedrizzi, B.	A new analytical method to measure S-methyl-l- methionine in grape juice reveals the influence of yeast on dimethyl sulfide production during fermentation.	<i>Journal of the Science of Food and Agriculture</i> 99 , 6944-6953, 2019
Wang, M., Yin, H., Zhou, Y., Meng, X., Waterhouse, G. I. N. , Ai, S.	A novel photoelectrochemical biosensor for the sensitive detection of dual microRNAs using molybdenum carbide nanotubes as nanocarriers and energy transfer between CQDs and AuNPs.	Chemical Engineering Journal 365 , 351-357, 2019
Guo, J., Cao, Y., Shi, R., Waterhouse, G. I. N ., Wu, LZ., Tung, CH., Zhang, T.	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes.	Angewandte Chemie - International Edition, 2019
Yule, L. R., Garelja, M. L., Hendrikse, E. H., Gingell, J. G., Poyner, D. R., Harris, P. W. R., Brimble, M. A ., Hay, D. L.	-	<i>Peptide Science</i> 111 , e24126, 2019
Wang, S., Zhang, Z., Dong, L., Waterhouse, G. I. N ., Zhang, Q., Li, L.	A remarkable thermosensitive hydrogel cross- linked by two inorganic nanoparticles with opposite charges.	Journal of Colloid and Interface Science 538 , 530- 540, 2019
Yathursan, S., Wiles, S., Read, H., Sarojini, V.	A review on anti-tuberculosis peptides: Impact of peptide structure on anti-tuberculosis activity.	Journal of Peptide Science, 2019
Qazvini, O. T., Babarao, R., Shi, ZL., Zhang, YB., Telfer, S. G.	A Robust Ethane-Trapping Metal-Organic Framework with a High Capacity for Ethylene Purification.	Journal of the American Chemical Society 141 , 5014-5020, 2019
Sun, Y., He, J., Waterhouse, G. I. N. , Xu, L., Zhang, H., Qiao, X., Xu, Z.	A selective molecularly imprinted electrochemical sensor with GO@COF signal amplification for the simultaneous determination of sulfadiazine and acetaminophen.	Sensors and Actuators, B: Chemical 300 , 2019
Guo, M., Hou, Q., Waterhouse, G. I. N. , Hou, J., Ai, S., Li, X.	A simple aptamer-based fluorescent aflatoxin B1 sensor using humic acid as quencher.	Talanta 205 , 2019
Zhang, X., Zhao, Y., Zhao, Y., Shi, R., Waterhouse, G. I. N., Zhang, T. A	A Simple Synthetic Strategy toward Defect-Rich Porous Monolayer NiFe-Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation.	Advanced Energy Materials 9 , 1900881, 2019
Jiang, W., Liu, C., Zhao, Y., Waterhouse, G. I. N. , Zhang, Z., Yu, L.	A solid-contact Pb ²⁺ -selective electrode based on a hydrophobic polyaniline microfiber film as the ion-to-electron transducer.	Synthetic Metals 248 , 94-101, 2019
Schwamm, R. J., Edwards, A. J., Fitchett, C. M ., Coles, M. P.	A study of di(amino)stibines with terminal Sb(iii) hydrogen-ligands by X-ray- and neutron- diffraction.	Dalton Transactions 48 , 2953-2958, 2019
Preston, D., Inglis, A. R., Garden, A. L., Kruger, P. E.	A symmetry interaction approach to $[M_2L_2]^{4*}$ metallocycles and their self-catenation.	Chemical Communications 55 , 13271-13274, 2019
Lee, D. J., Cameron, A. J., Wright, T. H., Harris, P. W. R., Brimble, M. A.	A Synthetic Approach to 'Click' Neoglycoprotein Analogues of EPO Employing One-pot Native Chemical Ligation and CuAAC Chemistry.	Chemical Science 10 , 815-828, 2019

AUTHORS	TITLE	JOURNAL
Yang, H., Shang, L., Zhang, Q., Shi, R., Waterhouse, G. I. N. , Gu, L., Zhang, T.	A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts.	Nature Communications 10, 2019
Xu, B., Hermant, Y., Yang, SH., Harris, P. W. R., Brimble, M. A.	A Versatile Boc Solid Phase Synthesis of Daptomycin and Analogues using Site Specific, On- resin Ozonolysis to Install the Kynurenine Residue.	Chemistry - A European Journal 25 , 14101-14107, 2019
Lazaro, S. E., Alkaş, A., Lee, S. J., Telfer, S. G. , Murray, K. S., Phonsri, W., Harding, P., Harding, D. J.	Abrupt spin crossover in iron(iii) complexes with aromatic anions.	Dalton Transactions 48 , 15515-15520, 2019
Chen, CC., Fan, HJ., Shaya, J., Chang, YK., Golovko, V. B. , Toulemonde, O., Huang, CH., Song, YX., Lu, CS.	Accelerated $ZnMoO_4$ photocatalytic degradation of pirimicarb under UV light mediated by peroxymonosulfate.	Applied Organometallic Chemistry 2019
Gloag, L., Mehdipour, M., Chen, D., Tilley, R.D. , Gooding, J.J.	Advances in the Application of Magnetic Nanoparticles for Sensing.	Advanced Materials 31 , 1904385, 2019
Tang, J., Daiyan, R., Ghasemian, M.B., Idrus-Saidi, S.A., Zavabeti, A., Daeneke, T., Yang, J., Koshy, P., Cheong, S., Tilley, R.D ., Kaner, R.B., Amal, R., Kalantar-Zadeh, K.	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy.	Nature Communications 10, 4645, 2019
Otazo, M. R., Ward, R., Gillies, G., Osborne, R. S., Golding, M., Williams, M. A. K.	Aggregation and coalescence of partially crystalline emulsion drops investigated using optical tweezers.	•
Makin, R. A., York, K., Durbin, S. M., Senabulya, N., Mathis, J., Clarke, R., Feldberg, N., Miska, P., Jones, C. M., Deng, Z., Williams, L., Kioupakis, E., Reeves, R. J.	Alloy-Free Band Gap Tuning across the Visible Spectrum.	Physical Review Letters 122 , 2019
Zhao, Y., Shi, R., Bian, X., Zhou, C., Zhao, Y., Zhang, S., Wu, F., Waterhouse, G. I. N. , Wu, LZ., Tung, CH., Zhang, T.	Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH_3 Production Rates?	Advanced Science 6 , 1802109, 2019
Lian, J., Yang, Y., Wang, W., Parker, S.G., Gonçales, V.R., Tilley, R.D. , Gooding, J.J.	Amorphous silicon on indium tin oxide: a transparent electrode for simultaneous light activated electrochemistry and optical microscopy.	Chemical Communications 55 , 123-126, 2019
Khadka, R., Aydemir, N., Carraher, C., Hamiaux, C., Colbert, D., Cheema, J., Malmström, J ., Kralicek, A., Travas-Sejdic, J.	An ultrasensitive electrochemical impedance- based biosensor using insect odorant receptors to detect odorants.	Biosensors and Bioelectronics 126 , 207-213, 2019
Pogrebnjak, A.D., Kong, CH., Webster, R.F., Tilley, R.D. , Takeda, Y., Oyoshi, K., Bondar, O.V., Buranich, V.V., Konstantinov, S.V., Baimoldanova, L.S., Opielak, M., Zukowski, P., Konarski, P.	Antibacterial Effect of Au Implantation in Ductile Nanocomposite Multilayer (TiAlSiY)N/CrN Coatings.	ACS Applied Materials and Interfaces, 2019
Parveen, S., Hanif, M., Leung, E., Tong, K. K. H., Yang, A., Astin, J., De Zoysa, G. H., Steel, T. R., Goodman, D., Movassaghi, S., Söhnel, T., Sarojini, V. , Jamieson, S. M. F., Hartinger, C. G.	Anticancer organorhodium and -iridium complexes with low toxicity: In vivo but high potency in vitro: DNA damage, reactive oxygen species formation, and haemolytic activity.	
Salim, M., Fraser-Miller, S. J., Sutton, J. J., Berzinš, K., Hawley, A., Clulow, A. J., Beilles, S., Gordon, K. C., Boyd, B. J.	Application of Low-Frequency Raman Scattering Spectroscopy to Probe in Situ Drug Solubilization in Milk during Digestion.	<i>Journal of Physical Chemistry Letters</i> 10 , 2258-2263, 2019
Bērziņš, K., Sutton, J. J., Loch, C., Beckett, D., Wheeler, B. J., Drummond, B. K., Fraser-Miller, S. J., Gordon, K. C.	Application of low-wavenumber Raman spectroscopy to the analysis of human teeth.	Journal of Raman Spectroscopy, 2019
Majic, M., Pratley, L., Schebarchov, D., Somerville, W. R. C., Auguié, B., Le Ru, E. C.	Approximate T matrix and optical properties of spheroidal particles to third order with respect to size parameter.	Physical Review A 99 , 2019
Strickland, N. M., Wimbush, S. C. , Rupich, M. W., Long, N. J.	Asymmetries in the field and angle dependences of the critical current in HTS tapes.	IEEE Transactions on Applied Superconductivity 29, 2019
Hamilton, K., Pantoja, A. E., Storey, J. G. , Jiang, Z., Badcock, R. A., Bumby, C. W.	Asynchronous Magnet-Stator Topologies in a Squirrel-Cage Superconducting Dynamo.	<i>IEEE Transactions on Applied Superconductivity</i> 29 , 5200705, 2019
Mallinson, J. B., Shirai, S., Acharya, S. K., Bose, S . K., Galli, E., Brown, S. A.	Avalanches and criticality in self-organized nanoscale networks.	Science Advances 5, 2019
Glossop, H. D., De Zoysa, G. H., Hemar, Y., Cardoso, P., Wang, K., Lu, J., Valéry, C., Sarojini, V.	Battacin-Inspired Ultrashort Peptides: Nanostructure Analysis and Antimicrobial Activity.	Biomacromolecules, 2019

AUTHORS	TITLE	JOURNAL
Ahangari, H. T., Portail, T., Marshall, A. T.	Comparing the electrocatalytic reduction of CO_2 to CO on gold cathodes in batch and continuous flow electrochemical cells.	Electrochemistry Communications 101 , 78-81, 201
Soffe, R., Altenhuber, N., Bernach, M., Remus- Emsermann, M. N. P., Nock, V.	Comparison of replica leaf surface materials for phyllosphere microbiology.	PLOS ONE 14 , 2019
Jaskólska, D. E., Brougham, D. F., Warring, S. L., McQuillan, A. J., Rooney, J. S., Gordon, K. C., Meledandri, C. J.	Competition-Driven Ligand Exchange for Functionalizing Nanoparticles and Nanoparticle Clusters without Colloidal Destabilization.	ACS Applied Nano Materials 2 , 2230–2240, 2019
Wang, M., Baek, P., Akbarinejad, A., Barker, D. , Travas-Sejdic, J.	Conjugated polymers and composites for stretchable organic electronics.	Journal of Materials Chemistry C 7, 5534-5552, 2019
Lambie, S. G., Weal, G. R., Blackmore, C. E., Palmer, R. E., Garden, A. L.	Contrasting motif preferences of platinum and gold nanoclusters between 55 and 309 atoms.	Nanoscale Advances 1, 2416-2425, 2019
Kelly, C.H.W., Benedetti, T.M., Alinezhad, A., Gooding, J.J., Tilley, R.D.	Controlling Metallic Nanoparticle Redox Properties for Improved Methanol Oxidation Reaction Electrocatalysis.	ChemCatChem 11 , 5989-5993, 2019
Freeman, J. L., Furkert, D. P., Brimble, M. A.	Convenient Access to 5-Membered Cyclic Iminium Ions: Evidence for a Stepwise [4+2] Cycloaddition Mechanism.	Organic and Biomolecular Chemistry 17 , 2705- 2714, 2019
Parveen, S., Tong, K. K. H., Khawar Rauf, M., Kubanik, M., Shaheen, M. A., Söhnel, T. , Jamieson, S. M. F., Hanif, M., Hartinger, C. G.	Coordination Chemistry of Organoruthenium Compounds with Benzoylthiourea Ligands and their Biological Properties.	Chemistry - An Asian Journal 14 , 1262–1270, 2019
Karabulut, F. N. H., Feltham, H. L. C., Brooker, S.	Correction: Substituents drive ligand rearrangements, giving dinuclear rather than mononuclear complexes, and tune Co ^{II} / ^{III} redox potential.	Dalton Transactions 48 , 12755-12756, 2019
Rogov, V. V., Stolz, A., Ravichandran, A. C., Rios-Szwed, D. O., Suzuki, H., Kniss, A., Löhr, F., Wakatsuki, S., Dötsch, V., Dikic, I., Dobson, R. C. J., McEwan, D. G.	Corrigendum to: Structural and functional analysis of the GABARAP interaction motif (GIM).	EMBO Reports 19 , e47268, 2018
Macreadie, L. K., Mensforth, E. J., Babarao, R., Konstas, K., Telfer, S. G. , Doherty, C. M., Tsanaktsidis, J., Batten, S. R., Hill, M. R.	CUB-5: A Contoured Aliphatic Pore Environment in a Cubic Framework with Potential for Benzene Separation Applications.	Journal of the American Chemical Society, 2019
Yousuf, M.U., Al-Bahadly, I., Avci, E.	Current Perspective on the Accuracy of Deterministic Wind Speed and Power Forecasting.	IEEE Access 7, 159547-159547, 2019
Sarojini, V. , Cameron, A. J., Varnava, K. G., Denny, W. A., Sanjayan, G.	Cyclic Tetrapeptides from Nature and Design: A Review of Synthetic Methodologies, Structure, and Function.	Chemical Reviews, 2019
Gupta, P., Fang, F., Rubanov, S., Loho, T., Koo, A., Swift, N., Fiedler, H., Leveneur, J. , Murmu, P. P., Markwitz, A., Kennedy, J.	Decorative black coatings on titanium surfaces based on hard bi-layered carbon coatings synthesized by carbon implantation.	Surface and Coatings Technology 358 , 386-393, 2019
Shi, R., Zhao, Y., Waterhouse, G. I. N. , Zhang, S., Zhang, T.	Defect engineering in photocatalytic nitrogen fixation.	ACS Catalysis, 2019
Nowak, E., Livney, Y. D., Niu, Z., Singh, H.	Delivery of bioactives in food for optimal efficacy: What inspirations and insights can be gained from pharmaceutics?	Trends in Food Science & Technology 91 , 557-573, 2019
Kumar, S., Gallician, G., Weidener, D., Sullivan, M. P., Söhnel, T. , Hanif, M., Hartinger, C. G.	Design of organoruthenium complexes for nanoparticle functionalization.	Journal of Organometallic Chemistry 891 , 64-71, 2019
Varnava, K. G., Mohid, S. A., Calligari, P., Stella, L., Reynison, J., Bhunia, A., Sarojini, V.	Design, Synthesis, Antibacterial Potential, and Structural Characterization of N-Acylated Derivatives of the Human Autophagy 16 Polypeptide.	Bioconjugate Chemistry, 2019
Schuyt, J. J., Williams, G. V. M.	Development of a 2D dosimeter using the optically stimulated luminescence of NaMgF ₃ :Eu with CCD camera readout.	Radiation Measurements 121 , 99–102, 2019
Lofroth, M., Avci, E.	Development of a Novel Modular Compliant Gripper for Manipulation of Micro Objects.	Micromachines 10 , 313, 2019

AUTHORS	TITLE	JOURNAL
Gai, S., Lucas, N. T ., Hawkins, B. C.	Benzannulated 6,5-Spiroketals from Donor- Acceptor Cyclopropanes.	Organic Letters 21 , 2872-2875, 2019
Gillard, R. M., Brimble, M. A.	Benzannulated spiroketal natural products: isolation, biological activity, biosynthesis, and total synthesis.	Organic and Biomolecular Chemistry 17 , 8272- 8307, 2019
Meng, D., Xie, J., Waterhouse, G. I. N. , Zhang, K., Zhao, Q., Wang, S., Qiu, S., Chen, K., Li, J., Ma, C., Pan, Y., Xu, J.	Biodegradable Poly(butylene adipate-co- terephthalate) composites reinforced with bio-based nanochitin: Preparation, enhanced mechanical and thermal properties.	Journal of Applied Polymer Science, 2019
Murugathas, T., Zheng, H. Y., Colbert, D., Kralicek, A. V., Carraher, C., Plank, N. O. V.	Biosensing with Insect Odorant Receptor Nanodiscs and Carbon Nanotube Field-Effect Transistors.	ACS Applied Materials and Interfaces 11 , 9530- 9538, 2019
Herklotz, F., Chaplygin, I., Lavrov, E. V., Neiman, A., Reeves, R. J., Allen, M. W.	Bistability of a hydrogen defect with a vibrational mode at 3326cm ⁻¹ in ZnO.	Physical Review B 99 , 115203, 2019
Menke, H., Timm, C., Brydon, P. M. R.	Bogoliubov Fermi surfaces stabilized by spin-orbit coupling.	<i>Physical Review B</i> 100 , 224505, 2019
Jllstad, F., Bioletti, G., Chan, J. R., Proust, A., Bodin, C., Ruck, B. J., Trodahl, J., Natali, F.	Breaking Molecular Nitrogen under Mild Conditions with an Atomically Clean Lanthanide Surface.	ACS Omega 4 , 5950-5954, 2019
D'Mara, P.B., Wilde, P., Benedetti, T.M., Andronescu, C., Cheong, S., Gooding, J.J., Tilley, R.D. , Schuhmann, W.	Cascade Reactions in Nanozymes: Spatially Separated Active Sites inside Ag-Core-Porous-Cu- Shell Nanoparticles for Multistep Carbon Dioxide Reduction to Higher Organic Molecules.	Journal of the American Chemical Society 141 , 14093-14097, 2019
Zhou, TY., Auer, B., Lee, S. J., Telfer, S. G.	Catalysts Confined in Programmed Framework Pores Enable New Transformations and Tune Reaction Efficiency and Selectivity.	Journal of the American Chemical Society 141 , 1577-1582, 2019
Resendiz-Lara, D. A., Whittell, G. R., Leitao, E. M. , Manners, I.	Catalytic Synthesis, Characterization, and Properties of Polyaminoborane Homopolymers and Random Copolymers.	Macromolecules 52 , 7052-7064, 2019
Vu, Y., Tilley, R.D. , Gooding, J.J.	Challenges and Solutions in Developing Ultrasensitive Biosensors.	Journal of the American Chemical Society 141 , 1162-1170, 2019
Chen, D., Melton, L. D., McGillivray, D. J. , Ryan, T. M., Harris, P. J.	Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.).	Planta, 2019
Dlejar, K. J., Ricci, A., Swift, S., Zujovic, Z., G ordon, K. C. , Fedrizzi, B., Versari, A., Kilmartin, P. A.	Characterization of an antioxidant and antimicrobial extract from cool climate, white grape marc.	Antioxidants 8 , 2019
Fomar, R., Kulkarni, A., Chen, K., Singh, S., Van Fhourhout, D., Hodgkiss, J. M. , Siebbeles, L. D. A., Hens, Z., Geiregat, P.	Charge Carrier Cooling Bottleneck Opens Up Nonexcitonic Gain Mechanisms in Colloidal CdSe Quantum Wells.	Journal of Physical Chemistry C, 2019
Kim, Y., Cameron, R. G., Williams, M. A. K ., Lee, C. J.	Charged functional domains introduced into a modified pectic homogalacturonan by a mixture of pectin methylesterases isozymes from sweet orange (Citrus sinensis L. Osbeck var. Pineapple).	Food Hydrocolloids 96 , 589-595, 2019
Baharudin, L., Yip, A. C. K., Golovko, V. B. , Polson, M. I. J., Watson, M. J.	CO temperature-programmed desorption of a hexameric copper hydride nanocluster catalyst supported on functionalized MWCNTs for active site characterization in a low-temperature water- gas shift reaction.	Chemical Engineering Journal 377 , 120278, 2019
Grand, J., Auguié, B., Le Ru, E. C.	Combined Extinction and Absorption UV-Visible Spectroscopy as a Method for Revealing Shape Imperfections of Metallic Nanoparticles.	Analytical Chemistry 91 , 14639-14648, 2019
Doonan, W., Higham, K. W., Governale, M., Zülicke, U.	Community structure in co-inventor networks affects time to first citation for patents.	Applied Network Science 4, 17, 2019

AUTHORS	TITLE	JOURNAL
Auguié, B., Darby, B. L., Le Ru, E. C.	Electromagnetic interactions of dye molecules surrounding a nanosphere.	Nanoscale 11 , 12177-12187, 2019
Wu, J., Fenech, M., Webster, R.F., Tilley, R.D. , Sharma, N.	Electron microscopy and its role in advanced lithium-ion battery research.	Sustainable Energy and Fuels 3 , 1623-1646, 2019
Dang, G. T., Allen, M. W. , Furuta, M., Kawaharamura, T.	Electronic devices fabricated on mist-CVD-grown oxide semiconductors and their applications.	Japanese Journal of Applied Physics 58 , 90606, 2019
Kolb, M. J., Garden, A. L. , Badan, C., Garrido Torres, J. A., Skúlason, E., Juurlink, L. B. F., Jónsson, H., Koper, M. T. M.	Elucidation of temperature-programmed desorption of high-coverage hydrogen on Pt(211), Pt(221), Pt(533) and Pt(553) based on density functional theory calculations.	Physical Chemistry Chemical Physics 21 , 17142- 17152, 2019
Ahumada-Lazo, R., Alanis, J. A., Parkinson, P., Binks, D. J., Hardman, S. J. O., Griffiths, J. T., Wisnivesky Rocca Rivarola, F., Humphrey, C. J., Ducati, C., Davis, N. J. L. K.	Emission Properties and Ultrafast Carrier Dynamics of CsPbCl ₃ Perovskite Nanocrystals.	The Journal of Physical Chemistry C 123 , 2651–2657, 2019
Collado-Fregoso, E., Pugliese, S. N., Wojcik, M., Benduhn, J., Bar-Or, E., Perdigón Toro, L., Hörmann, U., Spoltore, D., Vandewal, K., Hodgkiss, J. M. , Neher, D.	Energy-Gap Law for Photocurrent Generation in Fullerene-Based Organic Solar Cells: The Case of Low-Donor-Content Blends.	Journal of the American Chemical Society, 2019
Allardice, J. R., Thampi, A., Dowland, S., Xiao, J., Gray, V., Zhang, Z., Budden, P., Petty, A. J., Davis, N. J. L. K. , Greenham, N. C., Anthony, J. E., Rao, A.	Engineering Molecular Ligand Shells on Quantum Dots for Quantitative Harvesting of Triplet Excitons Generated by Singlet Fission.	Journal of the American Chemical Society, 2019
Compton, B. J., Farrand, K. J., Tang, CW., Osmond, T. L., Speir, M., Authier-Hall, A., Wang, J., Ferguson, P. M., Chan, S. T. S., Anderson, R. J., Cooney, T. R., Hayman, C. M., Williams, G. M., Brimble, M. A. , Brooks, C. R., Yong, LK., Metelitsah, L. S., Zajonc, D. M., Godfrey, D. I., Gasser, O., Weinkove, R., Painter, G. F., Hermans, I. F.	Enhancing T Cell Responses and Tumour Immunity by Vaccination with Peptides Conjugated to a Weak NKT Cell Agonist.	Organic and Biomolecular Chemistry 17 , 1225-1237 2019
Hashemi, A., Nock, V., Alkaisi, M., Ali, A.	Enhancing the resolution of bioimprinted casein microdevices.	International Journal of Nanotechnology 15 , 676-682, 2018
Raos, B. J., Simpson, M. C. , Doyle, C. S., Graham, E. S., Unsworth, C. P.	Evaluation of parylene derivatives for use as biomaterials for human astrocyte cell patterning.	PLOS ONE 14, e0218850, 2019
Lee, S., Khun, D., Kumarasinghe, G. L., De Zoysa, G. H., Sarojini, V. , Vellara, H. R., Rupenthal, I. D., Thakur, S. S.	Ex vivo evaluation of the stability, safety and antibacterial efficacy of an extemporaneous povidone-iodine preparation for ophthalmic applications.	Clinical and Experimental Optometry, 2019
McDougall, D. R., Chan, A., McGillivray, D. J. , de Jonge, M. D., Miskelly, G. M., Jeffs, A. G.	Examining the role of ethylenediaminetetraacetic acid (EDTA) in larval shellfish production in seawater contaminated with heavy metals.	Aquatic Toxicology 217 , 2019
Higham, K. W., Governale, M. , Jaffe, A. B., Zülicke, U.	Ex-ante measure of patent quality reveals intrinsic fitness for citation-network growth.	Physical Review E 99 , 2019
Vargas, M. J. T., Nieuwoudt, M.K. , Yong, R. M., Vanholsbeeck, F., Williams, D. E., Simpson, M. C.	Excellent quality microchannels for rapid microdevice prototyping: direct CO_2 laser writing with efficient chemical postprocessing.	Microfluidics and Nanofluidics 23 , 2019
Leveneur, J., Williams, G. V. M., Mitchell, D. R. G., Kennedy, J.	Exchange bias and large room temperature magnetoresistance in ion beam-synthesized Co nanoparticles in SiO ₂ .	Emergent Materials 2 , 313–325, 2019
Gorman, J., Pandya, R., Allardice, J. R., Price, M. B., Schmidt, T. W., Friend, R. H., Rao, A., Davis, N. J . L. K.	Excimer Formation in Carboxylic Acid- Functionalized Perylene Diimides Attached to Silicon Dioxide Nanoparticles.	The Journal of Physical Chemistry C 123 , 3433–3440, 2019
Roumpea, E., Kovalchuk, N. M., Chinaud, M., Nowak, E. , Simmons, M. J. H., Angeli, P.	Experimental studies on droplet formation in a flow-focusing microchannel in the presence of surfactants.	Chemical Engineering Science 195 , 507–518, 2019
Jiang, Z., Endo, N., Wimbush, S. C. , Brooks, J.,	Exploiting asymmetric wire critical current for the reduction of AC loss in hts coil windings.	Journal of Physics Communications 3 , 2019

AUTHORS	TITLE	JOURNAL
Kvach, M. V., Barzak, F. M., Harjes, S., Schares, H. A. M., Kurup, H. M., Jones, K. F., Sutton, L., Donahue, J., D'Aquila, R. T., Jameson, G. B. , Harki, D. A., Krause, K. L., Harjes, E., Filichev, V. V.	Differential Inhibition of APOBEC3 DNA-Mutator Isozymes by Fluoro- and Non-Fluoro-Substituted 2'-Deoxyzebularine Embedded in Single-Stranded DNA.	ChemBioChem, 2019
Singh, S., Hogue, R. W., Feltham, H. L. C., Brooker , S.	Dinuclear helicate and tetranuclear cage assembly using appropriately designed ditopic triazole-azine ligands.	Dalton Transactions 48 , 15435-15444, 2019
Hou, C., Gazoni, R. M., Reeves, R. J., Allen, M. W.	Direct comparison of plain and oxidized metal Schottky contacts on β -Ga ₂ O ₃ .	Applied Physics Letters 114, 33502, 2019
Alinezhad, A., Gloag, L., Benedetti, T.M., Cheong, S., Webster, R.F., Roelsgaard, M., Iversen, B.B., Schuhmann, W., Gooding, J.J., Tilley, R.D.	Direct Growth of Highly Strained Pt Islands on Branched Ni Nanoparticles for Improved Hydrogen Evolution Reaction Activity.	Journal of the American Chemical Society 141 , 16202-16207, 2019
Dhers, S., Feltham, H. L. C., Rouzières, M., Clérac, R., Brooker, S.	Discrete versus Chain Assembly: Hexacyanometallate Linkers and Macrocyclic {3d- 4f} Single-Molecule Magnet Building Blocks.	Inorganic Chemistry 58 , 5543-5554, 2019
Gingell, J., Rees, T., Hendrikse, E., Siow, A., Rennison, D., Scotter, J., Harris, P., Brimble, M. A. , Walker C., Hay, D.	Distinct Patterns of Internalization of Different Calcitonin Gene-related Peptide Receptors.	ACS Pharmacology and Translational Science 2 , in press, 2019
Grant, P. S., Kahlcke, N., Govindpani, K., Hunter, M., MacDonald, C., Brimble, M. A. , Glass, M., Furkert, D. P.	Divalent Cannabinoid-1 Receptor Ligands: A Linker Attachment Point Survey of SR141716A for Development of High-Affinity CB1R Molecular Probes.	Bioorganic and Medicinal Chemistry Letters 29 , 126644-126651, 2019
Liu, Y., Jiang, Z., Li, Q., Bumby, C. W. , Badcock, R. A., Fang, J.	Dynamic Resistance Measurement in a Four-Tape YBCO Stack with Various Applied Field Orientation.	IEEE Transactions on Applied Superconductivity 29, 4801507, 2019
Liu, Y., Jiang, Z., Sidorov, G., Bumby, C.W. , Badcock, R.A., Fang, J.	Dynamic resistance measurement in a YBCO wire under perpendicular magnetic field at various operating temperatures.	Journal of Applied Physics 126 , 243904, 2019
Khodabocus, M.I., Sellier, M., Nock, V.	Dynamics of Thin Film Under a Volatile Solvent Source Driven by a Constant Pressure Gradient Flow.	Fluids 4 , 198, 2019
Casini, A., Crowley, J. D.	Editorial: 'Supramolecular metal-based entities for biomedical and biological applications'.	Frontiers in Chemistry 7, 2019
Shahlori, R., McDougall, D. R., Mata, J. P., McGillivray, D. J.	Effect of acid molecules on biomimetic mineralisation of calcium phosphate and carbonate within biopolymer films using small angle neutron scattering.	Physica B: Condensed Matter 551 , 297-304, 2018
Griffiths, J. T., Rocca Rivarola, F. W., Davis, N. J . L. K. , Ahumada-Lazo, R., Alanis, J. A., Parkinson, P., Binks, D. J., Fu, W. Y., De La Pena, F., Price, M. B., Howkins, A., Boyd, I., Humphreys, C. J., Greenham, N. C., Ducati, C.	Effect of Size on the Luminescent Efficiency of Perovskite Nanocrystals.	ACS Applied Energy Materials 2 , 6998–7004, 2019
Sk, M. H., Qi, J., Abdullah, A. M., Laycock, N., Ryan, M. P., Williams, D. E.	Effect of Trace H ₂ S on the Scale Formation Behavior in a Predominant CO ₂ Environment under Hydrodynamic Control: Role of Cr/Mo Micro- Alloying in Plain Carbon Steel.	Journal of the Electrochemical Society 166 , C3233-C3240, 2019
Ingham, B., Ko, M., Shaw, P., Hassan Sk, M., Abdullah, A. M., Laycock, N., Williams, D. E.	Effects of oxygen on scale formation in CO ₂ corrosion of steel in hot brine: In situ synchrotron X-ray diffraction study of anodic products.	Journal of the Electrochemical Society 165 , C756-C761, 2018
Lepper, C. P., Williams, M. A. K. , Edwards, P. J. B., Filichev, V. V., Jameson, G. B.	Effects of Pressure and pH on the Physical Stability of an I-Motif DNA Structure.	ChemPhysChem 20 , 1567–1571, 2019
Kasim, J. K., Kavianinia, I., Ng, J., Harris, P. W. R., Birch, N. P., Brimble, M. A.	Efficient Synthesis and Characterisation of the Amyloid Beta Peptide, $A\beta_{1-42}$, using a Double Linker System.	Organic and Biomolecular Chemistry 17 , 30-34, 2019
Landon-Lane, L., Marshall, A. T ., Harrington, D. A.	EIS at carbon fiber cylindrical microelectrodes.	Electrochemistry Communications 109 , 2019
Silva, W.O., Silva, G.C., Webster, R.F., Benedetti, T.M., Tilley, R.D. , Ticianelli, E.A.	Electrochemical Reduction of CO ₂ on Nitrogen- Doped Carbon Catalysts With and Without Iron.	ChemElectroChem 6 , 4626-4636, 2019

AUTHORS	TITLE	JOURNAL
Lee, K. L., Aitken, J. F., Hsu, HL., Williams, G. M., Brimble, M. A., Cooper, G. J. S.	Glucoregulatory activity of vesiculin in insulin sensitive and resistant mice.	Peptides 116 , 1-7, 2019
Hackett, A. J., Malmström, J., Travas-Sejdic, J.	Grafting Poly(acrylic acid) from PEDOT to Control the Deposition and Growth of Platinum Nanoparticles for Enhanced Electrocatalytic Hydrogen Evolution.	ACS Applied Energy Materials 2 , 1436-1444, 201
Khmaladze, J., Sarkar, S., Soulier, M., Lyzwa, F., De Andres Prada, R., Perret, E., Mallett, B. P. P. , Minola, M., Keimer, B., Bernhard, C.	Granular superconductivity and charge/orbital order in YBa₂Cu₃Oァ/manganite trilayers.	Physical Review Materials 3 , 2019
Tu, B., Diestel, L., Shi, ZL., Bandara, W. R. L. N., Chen, Y., Lin, W., Zhang, YB., Telfer, S. G. , Li, Q.	Harnessing Bottom-Up Self-Assembly To Position Five Distinct Components in an Ordered Porous Framework.	Angewandte Chemie - International Edition, 2019
Roach, R. J., Garavís, M., González, C., Jameson, G. B. , Filichev, V. V., Hale, T. K.	Heterochromatin protein 1α interacts with parallel RNA and DNA G-quadruplexes.	Nucleic Acids Research 48 , 682-693, 2019
Ahmed, S., Ding, X., Murmu, P. P., Bao, N., Liu, R., Kennedy, J. , Wang, L., Ding, J., Wu, T., Vinu, A., Yi, J.	High Coercivity and Magnetization in $\mathrm{WSe}_{_2}$ by Codoping Co and Nb.	Small, 2019
Chandrabose, S., Chen, K., Barker, A. J., Sutton, J. J., Prasad, S. K. K., Zhu, J., Zhou, J., Gordon, K. C. , Xie, Z., Zhan, X., Hodgkiss, J. M.	High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films.	Journal of the American Chemical Society 141 , 6922-6929, 2019
Bryant, M. R., Ablott, T. A., Telfer, S. G. , Liu, L., Richardson, C.	High temperature expulsion of thermolabile groups for pore-space expansion in metal-organic frameworks.	CrystEngComm 21 , 60-64, 2019
Ding, X., Furkert, D. P., Brimble, M. A.	Highly Diastereoselective Synthesis of Syn-1,3- Dihydroxyketone Motifs from Propargylic Alcohols via Unusual Spiroepoxide Intermediates.	Angewandte Chemie - International Edition 58 , 11830-11835, 2019
Wang, S., Li, F., Dai, X., Wang, C., Lv, X., Waterhouse, G. I. N. , Fan, H., Ai, S.	Highly flexible and stable carbon nitride/cellulose acetate porous films with enhanced photocatalytic activity for contaminants removal from wastewater.	Journal of Hazardous Materials, 2019
Dai, S., Chandrabose, S., Xin, J., Li, T., Chen, K., Xue, P., Liu, K., Zhou, K., Ma, W., Hodgkiss, J. M. , Zhan, X.	High-performance organic solar cells based on polymer donor/small molecule donor/nonfullerene acceptor ternary blends.	Journal of Materials Chemistry A 7 , 2268-2274, 2019
Lardier, N., Roudier, P., Clothier, B., Willmott, G. R.	High-speed photography of water drop impacts on sand and soil.	European Journal of Soil Science 70 , 245–256, 20
Hou, C., Makin, R. A., York, K. R., Durbin, S. M., Scott, J. I., Gazoni, R. M., Reeves, R. J., Allen, M. W.	High-temperature (350 °c) oxidized iridium Schottky contacts on β -Ga ₂ O ₃ .	Applied Physics Letters 114 , 233503, 2019
Hou, C., Gazoni, R. M., Reeves, R. J., Allen, M. W.	High-Temperature β -Ga ₂ O ₃ Schottky Diodes and UVC Photodetectors Using RuO _x Contacts.	<i>IEEE Electron Device Letters</i> 40 , 1587-1590, 2019
Fallows, T.W., McGrath, A.J., Silva, J., McAdams, S.G., Marchesi, A., Tuna, F., Flitsch, S.L., Tilley, R.D. , Webb, S.J.	High-throughput chemical and chemoenzymatic approaches to saccharide-coated magnetic nanoparticles for MRI.	Nanoscale Advances 1 , 3597-3606, 2019
Guo, F., Yang, H., Liu, L., Han, Y., Al-Enizi, A. M., Nafady, A., Kruger, P. E., Telfer, S. G. , Ma, S.	Hollow capsules of doped carbon incorporating metal@metal sulfide and metal@metal oxide core-shell nanoparticles derived from metal- organic framework composites for efficient oxygen electrocatalysis.	Journal of Materials Chemistry A 7 , 3624-3631, 2019
Wu, Y., Bennett, D., Tilley, R.D. , Gooding, J.J.	How Nanoparticles Transform Single Molecule Measurements into Quantitative Sensors.	Advanced Materials, 1904339, 2019
Tomaskovic-Crook, E., Zhang, P., Ahtiainen, A., Kaisvuo, H., Lee, CY., Beirne, S., Aqrawe, Z., Svirskis, D., Hyttinen, J., Wallace, G. G., Travas- Sejdic, J. , Crook, J. M.	Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation.	Advanced Healthcare Materials, 2019
Tremlett, W. D. J., Tong, K. K. H., Steel, T. R., Movassaghi, S., Hanif, M., Jamieson, S. M. F., Söhnel, T. , Hartinger, C. G.	Hydroxyquinoline-derived anticancer organometallics: Introduction of amphiphilic PTA as an ancillary ligand increases their aqueous solubility.	Journal of Inorganic Biochemistry 199 , 110768, 2019

AUTHORS	TITLE	JOURNAL
Wang, L., Qu, X., Zhao, Y., Weng, Y., Waterhouse, G. I. N. , Yan, H., Guan, S., Zhou, S.	Exploiting Single Atom Iron Centers in a Porphyrin- like MOF for Efficient Cancer Phototherapy.	ACS Applied Materials and Interfaces 11 , 35228- 35237, 2019
Buckley, R. G., Butler, T., Pot, C., Strickland, N. M., Granville, S.	Exploring disorder in the spin gapless semiconductor Mn ₂ CoAl.	Materials Research Express 6, 2019
Swaminathan, A., Harrison,S.L., Ketheesan, N., van den Boogaard, C.H.A., Dear, K., Allen, M.W. , Hart, P.H., Cook, M., Lucas, R.M.	Exposure to Solar UVR Suppresses Cell-Mediated Immunization Responses in Humans: The Australian Ultraviolet Radiation and Immunity Study.	Journal of Investigative Dermatology 139 , 1545, 2019
Horvath, S. P., Rakonjac, J. V., Chen, YH., Longdell, J. J., Goldner, P., Wells, JP. R., Reid, M. F.	Extending Phenomenological Crystal-Field Methods to C1 Point-Group Symmetry: Characterization of the Optically Excited Hyperfine Structure of ${}^{167}\text{Er}^{3*}$:Y ₂ SiO ₅ .	Physical Review Letters 123 , 57401, 2019
Lee, K. L., Feld, J., Ben-Tal, Y., Guo, Z., Hume, P. , L eitao, E. M.	Facile Substituent Exchange at H-Phosphonate Diesters Limiting an Effective Synthesis of D-Phosphonate Diesters.	Asian Journal of Organic Chemistry, 2019
Schuyt, J. J., Williams, G. V. M.	F-centre/Mn complex photoluminescence in the fluoroperovskites AMgF ₃ :Mn (A = Na, K, or Rb).	<i>Optical Materials: X</i> 1 , 100010, 2019
Ashforth, S. A., Oosterbeek, R. N., Bodley, O. L. C., Mohr, C., Aguergaray, C., Simpson, M. C.	Femtosecond lasers for high-precision orthopedic surgery.	Lasers in Medical Science, 2019
Le, T. X. H., Cowan, M. G. , Drobek, M., Bechelany, M., Julbe, A., Cretin, M.	Fe-nanoporous carbon derived from MIL-53(Fe): A heterogeneous catalyst for mineralization of organic pollutants.	Nanomaterials 9 , 2019
Xiang, H., Sun-Waterhouse, D., Waterhouse, G. I. N., Cui, C., Ruan, Z.	Fermentation-enabled wellness foods: A fresh perspective.	Food Science and Human Wellness, 2019
Killeen, D. P., Card, A., Gordon, K. C. , Perry, N. B.	First Use of Handheld Raman Spectroscopy to Analyze Omega-3 Fatty Acids in Intact Fish Oil Capsules.	Applied Spectroscopy, 2019
Fallahi, A., Mandla, S., Kerr-Phillip, T., Seo, J., Rodrigues, R. O., Jodat, Y. A., Samanipour, R., Hussain, M. A., Lee, C. K., Bae, H., Khademhosseini, A., Travas-Sejdic, J. , Shin, S. R.	Flexible and Stretchable PEDOT-Embedded Hybrid Substrates for Bioengineering and Sensory Applications.	ChemNanoMat, 2019
Longley, L., Collins, S. M., Li, S., Smales, G. J., Erucar, I., Qiao, A., Hou, J., Doherty, C. M., Phornton, A. W., Hill, A. J., Yu, X., Terrill, N. J., Smith, A. J., Cohen, S. M., Midgley, P. A., Keen, D. A., Telfer, S. G. , Bennett, T. D.	Flux melting of metal-organic frameworks.	Chemical Science 10 , 3592-3601, 2019
Al - Zeer, M. I. M., Mackenzie, K. J. D .	Fly ash-based geopolymers as sustainable bifunctional heterogeneous catalysts and their reactivity in friedel-crafts acylation reactions.	Catalysts 9 , 2019
Miskell, G., Pattinson, W., Weissert, L., Williams, D.E.	Forecasting short-term peak concentrations from a network of air quality instruments measuring PM2.5 using boosted gradient machine models.	Journal of Environmental Management 242 , 56 64, 2019
Poerwoprajitno, A.R., Gloag, L., Benedetti, T.M., Cheong, S., Watt, J., Huber, D.L., Gooding, J.J., Filley, R.D.	Formation of Branched Ruthenium Nanoparticles for Improved Electrocatalysis of Oxygen Evolution Reaction.	Small 15 , 1804577, 2019
Davies, J. S., Coombes, D., Horne, C. R., Pearce, F. G., Friemann, R., North, R. A., Dobson, R. C. J.	Functional and solution structure studies of amino sugar deacetylase and deaminase enzymes from Staphylococcus aureus.	FEBS Letters 593 , 52-66, 2019
Jia, X., Bennett, T. D., Cowan, M. G.	Gas permeation of sulfur thin-films and potential as a barrier material.	Membranes 9 , 2019
Barnsley, J. E., Shillito, G. E., Larsen, C. B., Van Der Salm, H., Horvath, R., Sun, X. Z., Wu, X., George, M. W., Lucas, N. T., Gordon, K. C.	Generation of Microsecond Charge-Separated Excited States in Rhenium(I) Diimine Complexes: Driving Force Is the Dominant Factor in Controlling Lifetime.	Inorganic Chemistry 58 , 9785-9795, 2019
Casey-Stevens, C. A., Lambie, S. G., Ruffman, C., Skúlason, E., Garden, A. L.	Geometric and Electronic Effects Contributing to N_2 Dissociation Barriers on a Range of Active Sites on Ru Nanoparticles.	Journal of Physical Chemistry C 123 , 30458– 30466, 2019

AUTHORS

TITLE

AUTHORS	TITLE	JOURNAL
Nag, A., Waterland, M. , Janssen, P., Anderson, R., Singh, H.	Importance of intact secondary protein structures of cell envelopes and glass transition temperature of the stabilization matrix on the storage stability of probiotics.	Food Research International 123 , 198–207, 2019
Bhugra, V. S., Maddah, M., Williams, G. V., Plank, N., Nann, T.	Improved uniaxial dielectric properties in aligned diisopropylammonium bromide (DIPAB) doped poly(vinylidene difluoride) (PVDF) nanofibers.	RSC Advances 9, 31233-31240, 2019
Davis, N. J. L. K. , Allardice, J. R., Xiao, J., Karani, A., Jellicoe, T. C., Rao, A., Greenham, N. C.	Improving the photoluminescence quantum yields of quantum dot films through a donor/acceptor system for near-IR LEDs.	Materials Horizons 6 , 137-143, 2019
Kariman, A., Marshall, A. T.	Improving the stability of DSA electrodes by the addition of TiO_2 nanoparticles.	Journal of the Electrochemical Society 166 , E248-E251, 2019
Longbottom, R., Ingham, B. , Studer, A.J., Reid, M., Bumby, C.W. , Monaghan, B.	In situ neutron diffraction study of the reduction of New Zealand ironsands in dilute hydrogen mixtures.	Mineral Processing and Extractive Metallurgy 128 183-192, 2019
Whitby, C. P., Parthipan, R.	Influence of particle concentration on multiple droplet formation in Pickering emulsions.	Journal of colloid and interface science 554 , 315- 323, 2019
Gilja, V., Krehula, L. K., Katančić, Z., Krehula, S., Hrnjak-Murgić, Z., Travas-Sejdic, J.	Influence of titanium dioxide preparation method on photocatalytic degradation of organic dyes.	Croatica Chemica Acta 91 , 323-334, 2018
Kvach, M. V., Barzak, F. M., Harjes, S., Schares, H. A. M., Jameson, G. B. , Ayoub, A. M., Moorthy, R., Aihara, H., Harris, R. S., Filichev, V. V., Harki, D. A., Harjes, E.	Inhibiting APOBEC3 Activity with Single-Stranded DNA Containing 2'-Deoxyzebularine Analogues.	Biochemistry 58, 391–400, 2019
Kammermeier, M., Wenk, P., Zülicke, U.	In-plane magnetoelectric response in bilayer graphene.	Physical Review B 100, 2019
Price, M. B., Paton, A., Gorman, J., Wagner, I., Laufersky, G., Chen, K., Friend, R. H., Schmidt, T. W., Hodgkiss, J. M., Davis, N. J. L. K.	Inter-ligand energy transfer in dye chromophores attached to high bandgap SiO_2 nanoparticles.	<i>Chemical Communications</i> 55 , 8804–8807, 2019
Metin, D. Z., Gaston, N.	Internal and external pressure in cubic perovskites: electronic structure effects and systematic accuracy from first principles.	<i>Electronic Structure</i> 1 , 035001, 2019
Khansari, A., Bryant, M. R., Jenkinson, D. R., Jameson, G. B., Qazvini, O. T., Liu, L., Burrows, A. D., Telfer, S. G., Richardson, C.	Interpenetration isomers in isoreticular amine- tagged zinc MOFs.	CrystEngComm 21 , 7498–7506, 2019
Schwamm, R. J., Fitchett, C. M. , Coles, M. P.	Intramolecular Metal····π-Arene Interactions in Neutral and Cationic Main Group Compounds.	Chemistry - An Asian Journal, 2019
Pardehkhorram, R., Bonaccorsi, S., Zhu, H., Gonçales, V.R., Wu, Y., Liu, J., Lee, N.A., Tilley, R.D. , Gooding, J.J.	Intrinsic and well-defined second generation hot spots in gold nanobipyramids: Versus gold nanorods.	<i>Chemical Communications</i> 55 , 7707-7710, 2019
Wang, W., Shang, L., Chang, G., Yan, C., Shi, R., Zhao, Y., Waterhouse, G. I. N. , Yang, D., Zhang, T.	Intrinsic Carbon-Defect-Driven Electrocatalytic Reduction of Carbon Dioxide.	Advanced Materials, 2019
Khadka, R., Aydemir, N., Carraher, C., Hamiaux, C., Baek, P., Cheema, J., Kralicek, A., Travas-Sejdic, J.	Investigating Electrochemical Stability and Reliability of Gold Electrode-Electrolyte Systems to Develop Bioelectronic Nose Using Insect Olfactory Receptor.	Electroanalysis, 2019
Trompetter, W. J., Leveneur, J., Kennedy, J. , Rumsey, B., McCurdy, M., Chong, S. , Long, N.	Investigation of New Zealand's natural magnetic minerals for application in inroad charging systems.	International Journal of Modern Physics B, 2019
Krishnan, G., Eom, N., Kirk, R. M., Golovko, V. B. , Metha, G. F., Andersson, G. G.	Investigation of Phosphine Ligand Protected Au ₁₃ Clusters on Defect Rich Titania.	<i>Journal of Physical Chemistry C</i> 123 , 6642–6649, 2019
Cameron, A. J., Squire, C. J., Gérenton, A., Stubbing, L. A., Harris, P. W. R., Brimble, M. A.	Investigations of the key macrolactamisation step in the synthesis of cyclic tetrapeptide pseudoxylallemycin A.	Organic and Biomolecular Chemistry 17 , 3902- 3913, 2019
Pilkington, L. I., Deed, R. C., Parish-Virtue, K., Huang, CW., Walker, M. E., Jiranek, V., Barker, D. , Fedrizzi, B.	Iterative synthetic strategies and gene deletant experiments enable the first identification of polysulfides in: Saccharomyces cerevisiae.	Chemical Communications 55 , 8868-8871, 2019

AUTHORS	TITLE	JOURNAL
Li, S., Simpson, M. C., Graham, E. S., Unsworth, C. P.	Large 10 × 10 single cell grid networks of human hNT astrocytes on raised parylene-C/SiO ₂ substrates.	Journal of Neural Engineering 16 , 66001, 2019
Khansari, A., Telfer, S. G. , Richardson, C.	Large Pore Isoreticular Strontium-Organic Frameworks: Syntheses, Crystal Structures, and Thermal and Luminescent Properties.	Crystal Growth and Design 19 , 268-274, 2019
Arul, R., Oosterbeek, R. N., Mallett, B.P.P., Simpson, M.C.	Laser Direct-Writing Graphene Oxide to Graphene—Mechanisms to Applications.	Handbook of Graphene Set I-VIII, 2019
Barker, D.	Lignans.	Molecules 24 , 2019
Forgiarini, A., Wang, Z., D'Amore, C., Jay-Smith, M., Li, F. F., Hopkins, B., Brimble, M. A. , Pagetta, A., Bersani, S., De Martin, S., Napoli, B., Bova, S., Rennison, D., Orso, G.	Live Applications of Norbormide-based Fluorescent Probes in Drosophila melanogaster.	<i>PLOS ONE</i> 14 , e0211169, 2019
Barnsley, J. E., Findlay, J. A., Shillito, G. E., Pelet, W. S., Scottwell, S. Ø., McIntyre, S. M., Tay, E. J., Gordon, K. C., Crowley, J. D.	Long-lived MLCT states for Ru(ii) complexes of ferrocene-appended 2,2'-bipyridines.	Dalton Transactions 48 , 15713-15722, 2019
Brydon, P. M. R. , Abergel, D. S. L., Agterberg, D. F., Yakovenko, V. M.	Loop Currents and Anomalous Hall Effect from Time-Reversal Symmetry-Breaking Superconductivity on the Honeycomb Lattice.	Physical Review X 9 , 2019
Williams, D. E.	Low cost sensor networks: How do we know the data are reliable?	ACS Sensors, 2019
Jayaratna, N. B., Cowan, M. G. , Parasar, D., Funke, H. H., Reibenspies, J., Mykhailiuk, P. K., Artamonov, O., Noble, R. D., Dias, H. V. R.	Low Heat of Adsorption of Ethylene Achieved by Major Solid-State Structural Rearrangement of a Discrete Copper(I) Complex.	Angewandte Chemie - International Edition 57 , 16442, 2018
Sandupatla, A., Arulkumaran, S., Ranjan, K., Ing, N. G., Murmu, P. P., Kennedy, J. , Nitta, S., Honda, Y., Deki, M., Amano, H.	Low voltage high-energy α-particle detectors by GaN-on-GaN Schottky Diodes with record-high charge collection efficiency.	Sensors (Switzerland) 19 , 2019
Weissert, L. F., Alberti, K., Miskell, G., Pattinson, W., Salmond, J. A., Henshaw, G., Williams, D. E.	Low-cost sensors and microscale land use regression: Data fusion to resolve air quality variations with high spatial and temporal resolution.	Atmospheric Environment, 285-295, 2019
Bē Rziņš, K. R., Fraser-Mill er, S. J., Rades, T., Gordon, K. C.	Low-Frequency Raman Spectroscopic Study on Compression-Induced Destabilization in Melt- Quenched Amorphous Celecoxib.	Molecular Pharmaceutics 16 , 3678-3686, 2019
Pradal, C., Yakubov, G. E., Williams, M. A. K. , McGuckin, M. A., Stokes, J. R.	Lubrication by biomacromolecules: mechanisms and biomimetic strategies.	Bioinspiration & Biomimetics 14, 51001, 2019
Huang, S., Zhang, T., Jiang, C., Qi, R., Luo, C., Chen, Y., Lin, H., Travas-Sejdic, J. , Peng, H.	Luminescent CH₃NH₃PbBr₅/β-Cyclodextrin Core/Shell Nanodots with Controlled Size and Ultrastability through Host-Guest Interactions.	ChemNanoMat, 2019
Chong, S. V., Williams, G. V. M.	Magnetoelectric effect in magnetostrictive- piezoelectric composites containing magnetite nanoparticles.	Sensors and Actuators, A: Physical 288 , 101-106, 2019
Varnava, K. G., Sarojini, V.	Making Solid-Phase Peptide Synthesis Greener: A Review of the Literature.	Chemistry - An Asian Journal, 2019
Fabich, H. T., Brox, T. I., Clarke, D., Seymour, J. D., Codd, S. L., Galvosas, P. , Brown, J., Sederman, A. J., Holland, D. J.	Measurements of the velocity distribution for granular flow in a Couette cell.	Physical Review E 98 , 2018
Gangotra, A., Willmott, G. R.	Mechanical properties of bovine erythrocytes derived from ion current measurements using micropipettes.	Bioelectrochemistry 128 , 204-210, 2019
Al-Azri, Z. H. N., Aloufi, M., Chan, A., Waterhouse , G. I. N. , Idriss, H.	Metal particle size effects on the photocatalytic hydrogen ion reduction.	ACS Catalysis, 3946-3958, 2019
Tobias, A. K., Jones, M.	Metal-Enhanced Fluorescence from Quantum Dot- Coupled Gold Nanoparticles.	<i>Journal of Physical Chemistry C</i> 123 , 1389-1397, 2019
Thanihaichelvan, M., Browning, L. A., Dierkes, M. P., Reyes, R. M., Kralicek, A. V., Carraher, C., Marlow, C. A., Plank, N. O. V.	Metallic-semiconducting junctions create sensing hot-spots in carbon nanotube FET aptasensors near percolation.	Biosensors and Bioelectronics 130 , 408-413, 2019

AUTHORS	TITLE	JOURNAL
M. Fisser, R.A Badcock, C.W Bumby , P. D Teal, A. Hunze.	Method for In-Situ Strain Transfer Calibration of surface bonded Fiber Bragg Gratings.	IEEE Sensors 19 , 11926-11931, 2019
Penny, H., Hayman, D.T.S., Avci, E.	Micromanipulation System for Isolating a Single Cryptosporidium Oocyst.	Micromachines, 2019
Bernach, M., Soffe, R., Remus-Emsermann, M.N.P., Nock, V.	Micropatterning of hybrid polydimethylsiloxane for replica leaves.	Japanese Journal of Applied Physics 58 , SDDK01, 2019
Ferguson, S. A. Menorca, A., Van Zuylen, E. M., Cheung, CY., McConnell, M., Rennison, D., Brimble, M. A. , Bodle, K., McDougall, S., Cook, G. M., Heikal ,A.	Microtiter Screening Reveals Oxygen-Dependent Antimicrobial Activity of Natural Products Against Mastitis-Causing Bacteria.	Frontiers in Microbiology: Antimicrobials, Resistance and Chemotherapy 10 , 1995-1995, 2019
Batmunkh, M., Myekhlai, M., Bati, A.S.R., Sahlos, S., Slattery, A.D., Benedetti, T.M., Gonçales, V.R., Gibson, C.T., Gooding, J.J., Tilley, R.D. , Shapter, J.G.	Microwave-assisted synthesis of black phosphorus quantum dots: Efficient electrocatalyst for oxygen evolution reaction.	<i>Journal of Materials Chemistry A</i> 7 , 12974-12978, 2019
Schebarchov, D., Le Ru, E. C., Grand, J., Auguié, B.	Mind the gap: testing the Rayleigh hypothesis in T-matrix calculations with adjacent spheroids.	Optics Express 27, 35750-35760, 2019
Kostakis, G. E., Brooker, S.	Modern coordination chemistry.	Dalton Transactions 48, 15318-15320, 2019
Le Ster, M., Maerkl, T., Kowalczyk, P. J., Brown, S. A.	Moiré patterns in van der Waals heterostructures.	Physical Review B 99 , 2019
Chan, E. W. C., Baek, P., Tan, S. M., Davidson, S. J., Barker, D., Travas-Sejdic, J.	Molecular "Building Block" and "Side Chain Engineering": Approach to Synthesis of Multifunctional and Soluble Poly(pyrrole phenylene)s.	Macromolecular Rapid Communications 40 , 2019
Safaei, S., Archereau, A. Y. M., Hendy, S. C. , Willmott, G. R.	Molecular dynamics simulations of Janus nanoparticles in a fluid flow.	Soft Matter 15 , 6742-6752, 2019
Garelja, M., Au, M., Brimble, M. A. , Gingell, J., Hendrikse, E., Lovell, A., Prodan, N., Sexton, P. M., Siow, A., Walker, C., Watkins, H., Williams, G., Wootten, D., Yang, S., Harris P. W. R, Hay, D.	Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors.	ACS Pharmacology and Translational Science 2 , in press, 2019
Murmu, P.P., Kennedy, J. , Suman, S., Chong, S.V. , Leveneur, J. , Storey, J. , Rubanov, S., Ramanath, G.	Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films.	Materials and Design 163 , 107549, 2019
Williams, G.V.M., Kennedy, J., Murmu, P.P., Rubanov, S., Chong, S.V.	Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films	Journal of Magnetism and Magnetic Materials 473 , 125-130, 2019
Murmu, P. P., Kennedy, J. , Suman, S., Chong, S. V., Leveneur, J., Storey, J. , Rubanov, S., Ramanath, G.	Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films.	Materials and Design 163 , 2019
Qazvini, O. T., Babarao, R., Telfer, S. G.	Multipurpose Metal-Organic Framework for the Adsorption of Acetylene: Ethylene Purification and Carbon Dioxide Removal.	Chemistry of Materials, 2019
Amalathas, A. P., Alkaisi, M. M.	Nanostructures for light trapping in thin film solar cells.	Micromachines 10 , 2019
Brillson, L., Cox, J., Gao, H., Foster, G., Ruane, W., Jarjour, A., Allen, M.W. , Look, D., von Wenckstern, H., Grundmann, M.	Native Point Defect Measurement and Manipulation in ZnO Nanostructures.	Materials 12 , 2242, 2019
Davison, E. K., Brimble, M. A.	Natural Product Derived Privileged Scaffolds in Drug Discovery.	Current Opinion in Chemical Biology 52 , 1-8, 2019
Zhang, S., Kavianinia, I., Brimble, M. A.	Naturally Occurring Antitubercular Cyclic Peptides.	Tetrahedron Letters 60 , 151399-151352, 2019
Daniels, B. J., Li, F. F., Furkert, D. P., Brimble, M. A	Naturally Occurring Lumazines.	Journal of Natural Products 82, 2054-2065, 2019
Majic, M., Le Ru, E. C.	New class of solutions to Laplace equation: Regularized multipoles of negative orders.	Physical Review Research 1, 033213, 2019

AUTHORS	TITLE
Woodhouse, S. S., De Silva, D. N. T., Jameson, G. B. , Cutler, D. J., Sanz, S., Brechin, E. K., Davies, C. G., Jameson, G. N. L., Plieger, P. G.	New salicylaldoximato-bora from anion hydrolysis and t and iron complexes.
Hussein, R., Governale, M. , Kohler, S., Belzig, W., Giazotto, F., Braggio, A.	Nonlocal thermoelectricity splitter.
Lowrey, S., Blaikie, R.	Novel prism designs for soli lithography in the ultra high
Suschke, K., Gupta, P., Williams, G. V. M. , Hübner, R., Markwitz, A., Kennedy, J.	Observation of multiple ma and complex nanostructure amorphous carbon films.
Fan, S., Webb, J.E.A., Yang, Y., Nieves, D.J., Gonçales, V.R., Tran, J., Hilzenrat, G., Kahram, M., Tilley, R.D. , Gaus, K., Gooding, J.J.	Observing the Reversible Si Electrochemistry of Alexa F Internal Reflection Fluoresc
Clarke, D. A., Fabich, H. T., Brox, T. I., Galvosas, P. , Holland, D. J.	On the influence of rotation velocimetry of granular flow predictions and comparison
Gilmour, J. T. A., Gaston, N.	On the involvement of d-ele shells: The group 3 and 4 tra
Scott, J. I., Martinez-Gazoni, R. F., Allen, M. W., Reeves, R. J.	Optical and electronic prop Sb-doped SnO_2 thin films gr vapor deposition.
Schuyt, J. J., Williams, G. V. M.	Optical properties of Mn ²⁺ d potential real-time and retro dosimeter material.
Holmes-Hewett, W. F., Buckley, R. G., Ruck, B. J., Natali, F., Trodahl, H. J.	Optical spectroscopy of Sml conduction band.
Storey, J. G. , Pantoja, A. E., Jiang, Z., Badcock, R. A., Bumby, C. W.	Optimizing Rotor Speed and Externally Mounted HTS Dy
Mataira, R. C., Ainslie, M. D., Badcock, R. A., Bumby, C. W.	Origin of the DC output volt superconducting dynamo.
Hoskin, T. S., Crowther, J. M., Cheung, J., Epton, M. J., Sly, P. D., Elder, P. A., Dobson, R. C. J. , Kettle, A. J., Dickerhof, N.	
Pham, T. T., Gözaydın, G., Söhnel, T. , Yan, N., Sperry, J.	Oxidative Ring-Expansion of Platform Enables Access to Sugar Chemical Space.
Hou, C., Gazoni, R. M., Reeves, R. J., Allen, M. W.	Oxidized Metal Schottky Co
Schuyt, J. J., Williams, G. V. M.	Oxygen-impurity charge tra (Ln = Yb, Sm, or Eu): Establi energy levels in NaMgF ₃ .
Zhou, S., Shang, L., Zhao, Y., Shi, R., Waterhouse, G. I. N. , Huang, YC., Zheng, L., Zhang, T.	Pd Single-Atom Catalysts or Graphene for the Highly Sel Hydrogenation of Acetylene
Liu, H., Xiao, L., Zong, F., d'Eurydice, M. N., Galvosas, P.	Permeability Profiling of Ro Novel Spatially Resolved NM Method: Preliminary Result Limestone.
Musa, H., Hendrikse, E. R., Brimble, M. A. , Garelja, M. L., Watkins, H. A., Harris, P. W. R., Hay, D. L.	Pharmacological Characteri Investigation of N-Terminal Adrenomedullin 2 that are I Activation.
Jurkutat, M., Avramovska, M., Williams, G. V. M. , Dernbach, D., Pavićević, D., Haase, J.	Phenomenology of 63Cu Nu Cuprate Superconductors.
Tesana, S., Metha, G. F., Andersson, G. G., Ridings, C., Golovko, V.	Photocatalytic degradation dye using catalyst based on clusters supported on TiO ₂ .

rate ligands resulting their respective copper	Dalton Transactions 48, 11872–11881, 2019
in a Cooper-pair	Physical Review B 99 , 2019
id immersion optical h-NA regime.	International Journal of Nanotechnology 15 , 714-720, 2018
agnetic phases es in Co implanted	Journal of Physics and Chemistry of Solids 127 , 158-163, 2019
ingle Molecule Fluor 647 Dyes by Total cence Microscopy.	Angewandte Chemie - International Edition 58 , 14495-14498, 2019
nal motion on MRI ws – Theoretical n to experimental data.	Journal of Magnetic Resonance 307 , 2019
ectrons in superatomic ansition metals.	Physical Chemistry Chemical Physics 21 , 8035- 8045, 2019
perties of high quality rown by mist chemical	Journal of Applied Physics 126 , 135702, 2019
doped CsCdF ₃ : A rospective UV and X-ray	Journal of Applied Physics 125 , 2019
N: Locating the 4f	Physical Review B 99 , 2019
d Geometry for an lynamo.	IEEE Transactions on Applied Superconductivity 29, 5202705, 2019
tage from a high- T c	Applied Physics Letters 114 , 162601, 2019
calprotectin occurs in and susceptibility to	Redox Biology 24, 2019
of a Chitin-Derived Unexplored 2-Amino	European Journal of Organic Chemistry 2019 , 1355-1360, 2019
ontacts on (010) β -Ga ₂ O ₃ .	IEEE Electron Device Letters 40, 337-340, 2019
ansfer in NaMgF₃ :Ln lishing the lanthanide	Journal of Luminescence 211 , 413-417, 2019
n Nitrogen-Doped elective Photothermal le to Ethylene.	Advanced Materials, 2019
ock Cores Using a MR Relaxometry Its From Sandstone and	Journal of Geophysical Research: Solid Earth, 2019
rization and al Loop Amino Acids of Important for Receptor	Biochemistry 58 , 3468-3474, 2019
uclear Relaxation in	Journal of Superconductivity and Novel Magnetism 32 , 3369-3376, 2019
n of methylene blue n the gold-containing	International Journal of Nanotechnology 15 , 669- 675, 2019

AUTHORS	TITLE	JOURNAL
Sui, C., Li, F., Wu, H., Yin, H., Zhang, S., Waterhouse, G. I. N. , Wang, J., Zhu, L., Ai, S.	Photoelectrochemical biosensor for 5hmC detection based on the photocurrent inhibition effect of ZnO on MoS_2/C_3N_4 heterojunction.	Biosensors and Bioelectronics 142 , 2019
Wang, M., Yin, H., Zhou, Y., Sui, C., Wang, Y., Meng, X., Waterhouse, G. I. N. , Ai, S.	Photoelectrochemical biosensor for microRNA detection based on a MoS_2/g - $C_3N_4/black TiO_2$ heterojunction with Histostar@AuNPs for signal amplification.	Biosensors and Bioelectronics 128 , 137-143, 2019
Wang, Y., Li, X., Waterhouse, G. I. N. , Zhou, Y., Yin, H., Ai, S.	Photoelectrochemical biosensor for protein kinase A detection based on carbon microspheres, peptide functionalized Au-ZIF-8 and $\text{TiO}_2/\text{g-C}_3\text{N}_4$.	Talanta 196 , 197-203, 2019
Wang, Y., Yin, H., Li, X., Waterhouse, G. I. N. , Ai, S.	Photoelectrochemical immunosensor for N ⁶ - methyladenine detection based on Ru@UiO-66, Bi_2O_3 and Black TiO ₂ .	Biosensors and Bioelectronics 131 , 163-170, 2019
Wang, M., Kee, S., Baek, P., Ting, M. S., Zujovic, Z., Barker, D., Travas-Sejdic, J.	Photo-patternable, stretchable and electrically conductive graft copolymers of poly(3-hexylthiophene).	Polymer Chemistry 10 , 6278-6289, 2019
Akabar, N., Chaturvedi, V., Shillito, G. E., Schwehr, B. J., Gordon, K. C. , Huff, G. S., Sutton, J. J., Skelton, B. W., Sobolev, A. N., Stagni, S., Nelson, D. J., Massi, M.	Photophysical and biological investigation of phenol substituted rhenium tetrazolato complexes.	Dalton Transactions 48 , 15613-15624, 2019
Li, Z., Liu, J., Zhao, Y., Shi, R., Waterhouse, G. I. N. , Wang, Y., Wu, LZ., Tung, CH., Zhang, T.	Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets.	Nano Energy 60 , 467-475, 2019
Li, D., Lao, J., Jiang, C., Luo, C., Qi, R., Lin, H., Huang, R., Waterhouse, G. I. N. , Peng, H.	Plasmonic Au nanoparticle-decorated Bi ₂ Se ₃ nanoflowers with outstanding electrocatalytic performance for hydrogen evolution.	International Journal of Hydrogen Energy 44 , 30876-30884, 2019
Hong, F., Blaikie, R.	Plasmonic Lithography: Recent Progress.	Advanced Optical Materials 7, 1801653, 2019
Zhang, Z., Wang, S., Waterhouse, G. I. N., Zhang, Q., Li, L.	Poly(N-isopropylacrylamide)/mesoporous silica thermosensitive composite hydrogels for drug loading and release.	Journal of Applied Polymer Science, 2019
Mansel, B. W., Ryan, T. M., Chen, HL., Lundin, L., Williams, M. A. K.	Polysaccharide conformations measured by solution state X-ray scattering.	Chemical Physics Letters, 2019
Grand, J., Le Ru, E. C.	Practical Implementation of Accurate Finite- Element Calculations for Electromagnetic Scattering by Nanoparticles.	Plasmonics 15, 109-121, 2019
Agarwal, P., Khun, D., Krösser, S., Eickhoff, K., Wells, F. S., Willmott, G. R. , Craig, J. P., Rupenthal, I. D.	Preclinical studies evaluating the effect of semifluorinated alkanes on ocular surface and tear fluid dynamics.	Ocular Surface 17 , 241-249, 2019
Rodríguez-Jiménez, S., Bondì, L., Yang, M., Garden, A. L., Brooker, S.	Predictable Electronic Tuning By Choice of Azine Substituent in Five Iron(II) Triazoles: Redox Properties and DFT Calculations.	Chemistry - An Asian Journal 14 , 1158-1166, 2019
McPherson, J. N., Hogue, R. W., Akogun, F. S., Bondì, L., Luis, E. T., Price, J. R., Garden, A. L., Brooker, S., Colbran, S. B.	Predictable Substituent Control of Co ^{III} / ^{II} Redox Potential and Spin Crossover in Bis(dipyridylpyrrolide)cobalt Complexes.	Inorganic Chemistry 58 , 2218-2228, 2019
Fahey, L. M., Nieuwoudt, M. K. , Harris, P. J.	Predicting the cell-wall compositions of solid Pinus radiata (radiata pine) wood using NIR and ATR FTIR spectroscopies.	<i>Cellulose</i> 26 , 13-14, 2019
Wonanke, A. D. D., Ferguson, J. L., Fitchett, C. M. , Crittenden, D. L.	Predicting the Outcome of Photocyclisation Reactions: A Joint Experimental and Computational Investigation.	Chemistry - An Asian Journal 14 , 1293-1303, 2019

TITLE	JOURNAL
·	ACS Nano, 2019
, ,	Nature Materials 18 , 370-376, 2019
Pressureless sintering of Al-free Ta-doped lithium garnets $\text{Li}_{7^-x}\text{La}_3\text{Zr}_{2^-x}\text{Ta}_xO_{12}$ and the degradation mechanism in humid air.	Ceramics International 45 , 20945-20960, 2019
Protein Levels and Microstructural Changes in Localized Regions of Early Cartilage Degeneration Compared with Adjacent Intact Cartilage.	Cartilage, 2019
Protein-protein crosslinking in food: Proteomic characterisation methods, consequences and applications.	Trends in Food Science and Technology 86 , 217-229, 2019
p-wave superconductivity in iron-based superconductors.	Scientific Reports 9 , 14245, 2019
Qualitative Guest Sensing via Iron(II) Triazole Complexes.	Inorganic Chemistry 58 , 8188-8197, 2019
, Quantifying silo flow using MRI velocimetry for testing granular flow models.	Physical Review Fluids 4 , 2019
Quasistatic limit of the electric-magnetic coupling blocks of the T-matrix for spheroids.	Journal of Quantitative Spectroscopy and Radiative Transfer 225 , 16-24, 2019
Quenching of the Sm ²⁺ luminescence in NaMgF ₃ :Sm via photothermal ionization: Alternative method to determine divalent lanthanide trap depths.	
Raman spectroscopy for the diagnosis of dermatological disease.	Australasian Journal of Dermatlogy 60 , E372-E372, 2019
Raspberry-like small multicore gold nanostructures for efficient photothermal conversion in the first and second near-infrared windows.	<i>Chemical Communications</i> 55 , 4055-4058, 2019
Rational Synthesis, Structures and Properties of the Ionic Liquid Binary Iodine-Bromine Octahalide Series $[I_nBr_{g-n}]^{2-}$ (n=0, 2, 3, 4).	Chemistry - A European Journal 25 , 11659-11669, 2019
Recyclable polyvinyl alcohol sponge containing flower-like layered double hydroxide microspheres for efficient removal of As(V) anions and anionic dyes from water.	Journal of Hazardous Materials 367 , 286-292, 2019
Red luminescent metal–organic framework	Applied Physics A: Materials Science and
	Present and Future of Surface-Enhanced Raman Scattering. Scattering. i, .

MacDiarmid Institute

AUTHORS	TITLE	JOURNAL
Preston, D., Inglis, A. R., Crowley, J. D., Kruger, P. E.	Self-assembly and Cycling of a Three-state $Pd_x L_y$ Metallosupramolecular System.	Chemistry - An Asian journal 14 , 3404-3408, 201
Butler, P. W. V., Kruger, P. E. , Ward, J. S.	Self-assembly of M_4L_4 tetrahedral cages incorporating pendant PS and PSe functionalised ligands.	Chemical Communications 55 , 10304-10307, 2014
Mallett, B. P. P. , Marsik, P., Munzar, D., Bernhard, C., Dubroka, A.	Signatures of the bonding-antibonding splitting in the c -axis infrared response of moderately underdoped bilayer and trilayer cuprate superconductors.	Physical Review B 99 , 2019
Le Ster, M., Maerkl, T., Brown, S. A.	Simple Analytical Model for Moire Patterns.	2D Materials 7, 011005, 2019
Wu, T., Lankshear, E. R., Downard, A. J.	Simultaneous Electro-Click and Electrochemically Mediated Polymerization Reactions for One-Pot Grafting from a Controlled Density of Anchor Sites.	ChemElectroChem 6 , 5149-5154, 2019
Binding, S.C., Pernik, I., Goncales, V.R., Wong, C.M., Webster, R.F., Cheong, S., Tilley, R.D. , Garcia-Bennett, A.E., Gooding, J.J., Messerle, B.A.	Simultaneous Functionalization of Carbon Surfaces with Rhodium and Iridium Organometallic Complexes: Hybrid Bimetallic Catalysts for Hydroamination.	Organometallics 38 , 780-787, 2019
Rastelli, G., Governale, M.	Single atom laser in normal-superconductor quantum dots.	<i>Physical Review B</i> 100 , 085435, 2019
Feng, X., Kawabata, K., Cowan, M. G. , Dwulet, G. E., Toth, K., Sixdenier, L., Haji-Akbari, A., Noble, R. D., Elimelech, M., Gin, D. L., Osuji, C. O.	Single crystal texture by directed molecular self- assembly along dual axes.	Nature Materials 18 , 1235-1243, 2019
Ng, J., Kaur, H., Collier, T., Chang, K., Brooks, A. E. S., Allison, J. R., Brimble, M. A. , Hickey A., Birch, N. P.	Site-specific Glycations of Aβ1–42 Affect Fibril Formation and are Neurotoxic.	Journal of Biological Chemistry 294 , 8806-8818, 2019
Lynam, M. F., Ke, NJ., Bradley, S. J., Nann, T., Neiman, A., Reeves, R. J., Downard, A. J., Golovko, V. B., Allen, M. W.	Size-controlled, high optical quality ZnO nanowires grown using colloidal Au nanoparticles and ultra- small cluster catalysts.	APL Materials 7 , 22518, 2019
Le Ru, E. C.	Snapshots of vibrating molecules.	Nature 568 , 36-37, 2019
Kihara, S., Van Der Heijden, N. J., Seal, C. K., Mata, J. P., Whitten, A. E., Köper, I., McGillivray, D. J.	Soft and Hard Interactions between Polystyrene Nanoplastics and Human Serum Albumin Protein Corona.	Bioconjugate Chemistry, 2019
Kihara, S., De Zoysa, G. H., Shahlori, R., Vadakkedath, P. G., Ryan, T. M., Mata, J. P., Sarojini, V., McGillivray, D. J.	Solution structure of linear battacin lipopeptides- the effect of lengthening fatty acid chain.	Soft Matter 15 , 7510-7508, 2019
Wilson, B.H., Scott, H.S., Archer, R.J., Mathonière, C., Clérac, R., Kruger, P.E.	Solution-State Spin Crossover in a Family of $[Fe(L)_2(CH_3CN)_2](BF_4)_2$ Complexes.	Magnetochemistry 5 , 22, 2019
Archer, R. J., Scott, H. S., Polson, M. I. J., Mathonière, C., Rouzières, M., Clérac, R., Kruger, P.E.	Solvent Dependent Spin-Crossover and Photomagnetic Properties in an Imidazolylimine FeII Complex.	Chemistry - An Asian Journal 14 , 2225-2229, 201
Sertphon, D., Harding, P., Murray, K. S., Moubaraki, B., Neville, S. M., Liu, L., Telfer, S. G. , Harding, D. J.	Solvent effects on the spin crossover properties of iron(II) imidazolylimine complexes.	<i>Crystals</i> 9 , 116, 2019
Gordon, K. C.	Special issue "Raman spectroscopy: A spectroscopic 'Swiss-Army knife'".	Molecules 24 , 2852, 2019
Telfer, S. , Xu, Q.	Special issue for the 6th International Conference on Metal-Organic Frameworks & Open Framework Compounds (MOF2018).	Coordination Chemistry Reviews, 2019
Gioia, L., Christie, M. G., Zülicke, U., Governale, M. , Sneyd, A. J.	Spherical topological insulator nanoparticles: Quantum size effects and optical transitions.	Physical Review B 100 , 205417, 2019
Tu, S., Hu, J., Butler, T., Wang, H., Zhang, Y., Zhao, W., Granville, S. , Yu, H.	Spin-dependent thermoelectric effect in $Co_2Fe_{0,4}Mn_{0,6}Si$ thin film with perpendicular magnetic anisotropy.	Physics Letters, Section A: General, Atomic and Solid State Physics 3838 , 670-673, 2019
Rathnakumar, S. S., Noluthando, K., Kulandaiswamy, A. J., Rayappan, J. B. B., Kasinathan, K., Kennedy, J. , Maaza, M.	Stalling behaviour of chloride ions: A non- enzymatic electrochemical detection of α-Endosulfan using CuO interface.	Sensors and Actuators, B: Chemical 293 , 100-100 2019

AUTHORS	TITLE	JOURNAL
Vasdev, R. A. S., Findlay, J. A., Garden, A. L., Crowley, J. D.	Redox active [Pd ₂ L ₄] ⁴⁺ cages constructed from rotationally flexible 1,1'-disubstituted ferrocene ligands.	Chemical Communications 55 , 7506-7509, 2019
Hong, F., Blaikie, R.	Reflective metamaterial polarizer enabled by solid- immersion Lloyd's mirror interference lithography.	Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics 37 , 2019
Keren, A., Crump, W., Mallett, B. P. P., Chong, S. V. , Keren, I., Luetkens, H., Tallon, J. L.	Relevance of magnetism to cuprate superconductivity: Lanthanides versus charge- compensated cuprates.	Physical Review B 100 , 144512, 2019
Miskell, G., Alberti, K., Feenstra, B., Henshaw, G. S., Papapostolou, V., Patel, H., Polidori, A., Salmond, J. A., Weissert, L., Williams, D. E.	Reliable data from low cost ozone sensors in a hierarchical network.	Atmospheric Environment 214 , 116870, 2019
Sanjuan-Alberte, P., Saleh, E., Shaw, A. J., Lacalendola, N., Willmott, G. , Vaithilingam, J., Alexander, M. R., Hague, R. J. M., Rawson, F. J.	Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces.	ACS Applied Materials and Interfaces 11 , 8928- 8936, 2019
Soffe, R., Bernach, M., Remus-Emsermann, M. N. P., Nock, V.	Replicating Arabidopsis Model Leaf Surfaces for Phyllosphere Microbiology.	Scientific Reports 9 , 14420, 2019
Mansel, B. W., Irani, A. H., Ryan, T. M., McGillivray, D. J., Chen, HL., Williams, M. A. K.	Resolving solution conformations of the model semi-flexible polyelectrolyte homogalacturonan using molecular dynamics simulations and small- angle x-ray scattering.	European Physical Journal E 42 , 19, 2019
Pradal, C., Yakubov, G. E., Williams, M. A. K. , McGuckin, M. A., Stokes, J. R.	Responsive polysaccharide-grafted surfaces for biotribological applications.	Biotribology 18, 100092, 2019
Theodore, R., Webber, M., Blaikie, R. , Larner, W.	Rethinking our shared futures.	Journal of the Royal Society of New Zealand 49 , 2019
Ren, C. ZJ., Solís Muñana, P., Dupont, J., Zhou, S. S., Chen, J. LY.	Reversible Formation of a Light-Responsive Catalyst by Utilizing Intermolecular Cooperative Effects.	Angewandte Chemie (International ed. in English) 58, 15254-15258, 2019
Preston, D., Kruger, P. E.	Reversible Transformation between a $[PdL_2]^{2*}$ "Figure-of-Eight" Complex and a $[Pd_2L_2]^{4*}$ Dimer: Switching On and Off Self-Recognition.	<i>Chemistry - A European Journal</i> 25 , 1781-1786, 2019
Baldhoff, T., Nock, V., Marshall, A. T.	Review — Through-mask electrochemical micromachining.	Journal of the Electrochemical Society 165 , E841-E855, 2018
Galvosas, P., Brox, T. I., Kuczera, S.	Rheo-NMR in food science—Recent opportunities.	Magnetic Resonance in Chemistry 57, 757-765, 2019
Zhang, S., Chen, Y., Liu, H., Wang, Z., Ling, H., Wang, C., Ni, J., Saltik, B. C., Wang, X., Meng, X., Kim, HJ., Baidya, A., Ahadian, S., Ashammakhi, N., Dokmeci, M. R., Travas-Sejdic, J. , Khademhosseini, A.	Room-Temperature-Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics.	Advanced Materials, 1904752, 2019
Rashidinejad, A., Loveday, S. M., Jameson, G. B. , Hindmarsh, J. P., Singh, H.	Rutin-casein co-precipitates as potential delivery vehicles for flavonoid rutin.	Food Hydrocolloids 96 , 451-462, 2019
Han, MG., Garlow, J., Kharkov, Y., Camacho, L., Vats, G., Kisslinger, K., Kato, K., Sushkov, O., Ulrich, C., Söhnel, T. , Seidel, J., Zhu, Y.	Scaling and channelling behavior of helical and skyrmion spin textures in thin films of Te-doped Cu ₂ OSeO ₃ .	Microscopy and Microanalysis 25 , 30-31, 2019
Xu, B., Cappelluti, E., Benfatto, L., Mallett, B. P. P., Marsik, P., Sheveleva, E., Lyzwa, F., Wolf, T., Yang, R., Qiu, X. G., Dai, Y. M., Wen, H. H., Lobo, R. P. S. M., Bernhard, C.	2 0	Physical Review Letters 122 , 217002, 2019
Jeffares, B., Boston, J., Gerrard, J., Hendy, S. , Larner, W.	Science Advice in New Zealand.	Policy Quarterly; Vol 15 No 2 (2019): Special Issue: Localism and DevolutionDO, 2019
Murmu, P. P., Chong, S. V., Storey, J.G. , Rubanov, S., Kennedy, J.	Secondary phase induced electrical conductivity and improvement in thermoelectric power factor of zinc antimonide films.	Materials Today Energy 13 , 249-255, 2019
Barzak, F. M., Harjes, S., Kvach, M. V., Kurup, H. M., Jameson, G. B. , Filichev, V. V., Harjes, E.	Selective inhibition of APOBEC3 enzymes by single-stranded DNAs containing 2'-deoxyzebularine.	Organic & Biomolecular Chemistry 17 , 9435–9441, 2019

AUTHORS	TITLE	JOURNAL
Stubbing, L. A., Kavianinia, I., Abbattista, M. R., Harris, P. W. R., Smaill, J. B., Patterson, A. V., Brimble, M. A.	Synthesis and Antiproliferative Activity of Culicinin D Analogues Containing Simplified AHMOD-based Residues.	European Journal of Medicinal Chemistry 177 , 235-246, 2019
Alkaş, A., Telfer, S. G.	Synthesis and Characterization of Zn-Carboxylate Metal-Organic Frameworks Containing Triazatruxene Ligands.	Australian Journal of Chemistry 72 , 786-796, 201
Lu, B., Williams, G. M., Verdon, D., Dunbar, P. R., Brimble, M. A.	Synthesis and Evaluation of Novel TLR2 Agonists as Potential Adjuvants for Cancer Vaccines.	Journal of Medicinal Chemistry 62 , in press, 2019
Cameron, A. J., Davison, E. K., An, C., Stubbing, L. A., Dunbar, P. R., Harris, P. W. R., Brimble, M. A.	Synthesis and SAR Analysis of Lipovelutibols B and D and their Lipid Analogues.	Journal of Organic Chemistry 84 , in press, 2019
Spasovski, M., Avdeev, M., Söhnel, T.	Synthesis and Structural Determination of the Disordered Bixbyite $Cu_{3\cdot x}Sb_{1\cdot x}O_{5.5\cdot 3x/2}$ with Spin-Glass Behaviour.	Chemistry - An Asian Journal 14 , 1286-1292, 2019
Somarathne, K. K., McCone, J. A. J., Brackovic, A., Rivera, J. L. P., Fulton, J. R. , Russell, E., Field, J. J., Orme, C. L., Stirrat, H. L., Riesterer, J., Teesdale- Spittle, P. H., Miller, J. H., Harvey, J. E.	Synthesis of Bioactive Side-Chain Analogues of TAN-2483B.	Chemistry - An Asian Journal 14 , 1230-1237, 2019
Hall, T. B. J., Hoggard, B. R., Larsen, C. B., Lucas, N. T.	Synthesis of Cyclopenta-HBCs and their Regioselective Chlorination During Oxidative Cyclodehydrogenation.	Chemistry - An Asian Journal 14 , 1106-1110, 2019
Davison, E. K., Cameron, A. J., Harris, P. W. R., Brimble, M. A.	Synthesis of Endolides A and B; Naturally Occurring N-Methylated Cyclic Tetrapeptides.	MedChemComm 10 , 693-698, 2019
Poerwoprajitno, A.R., Gloag, L., Cheong, S., Gooding, J.J., Tilley, R.D.	Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis.	Nanoscale 11 , 18995-19011, 2019
Grant, P. S., Brimble, M. A. , Furkert, D. P.	Synthesis of the Bicyclic Lactone Core of Leonuketal Enabled by a Telescoped Diels-Alder Reaction Sequence.	Chemistry - An Asian Journal 14 , 1128-1135, 2019
Jeong, J. Y., Sperry, J., Brimble, M. A.	Synthesis of the Tetracyclic Cores of the Integrastatins, Epicoccolide A and Epicocconigrone A.	Journal of Organic Chemistry 84 , 11935-11944, 2019
van Hilst, Q. V. C., Vasdev, R. A. S., Preston, D., Findlay, J. A., Scottwell, S. Ø., Giles, G. I., Brooks, H. J. L., Crowley, J. D.	Synthesis, Characterisation and Antimicrobial Studies of some 2,6-bis(1,2,3-Triazol-4-yl)Pyridine Ruthenium(II) "Click" Complexes.	Asian Journal of Organic Chemistry 8 , 496-505, 2019
Rabanzo-Castillo, K. M., Hanif, M., Söhnel, T., Leitao, E. M.	Synthesis, characterisation and electronic properties of naphthalene bridged disilanes.	Dalton Transactions 48 , 13971-13980, 2019
Booker, E. P., Griffiths, J. T., Eyre, L., Ducati, C., Greenham, N. C., Davis, N. J. L. K.	Synthesis, Characterization, and Morphological Control of Cs_2CuCl_4 Nanocrystals.	Journal of Physical Chemistry C 123 , 16951-16956 2019
Müllner, S., Crump, W., Wulferding, D., Mallett, B. P. P., Lemmens, P., Keren, A., Tallon, J. L.	Systematic Raman study of optical phonons in RBa ₂ Cu ₃ O ₆₊₆ (R= Y, Dy, Gd, Sm, Nd): Antiferromagnetic coupling strength versus lattice parameters.	Physical Review B 99 , 094525, 2019
Abdelbassit, M. S., Curnow, O. J., Dixon, M. K., Waterland, M. R.	The Binary Iodine-Chlorine Octahalide Series $[I_nCl_{8-n}]^{2-}$ (n=3, 3.6, 4).	<i>Chemistry - A European Journal</i> 25 , 11650–11658 2019
Leung, E., Pilkington, L.I., Naiya, M.M., Barker, D., Zafar, A., Eurtivong, C., Reynisson, J.	The cytotoxic potential of cationic triangulenes against tumour cells.	MedChemComm 10 , 1881-1891, 2019
Schuurman, J. C., McNeill, A. R., Martinez-Gazoni, R. F., Scott, J. I., Reeves, R. J., Allen, M. W., Downard, A. J.	The effect of covalently bonded aryl layers on the band bending and electron density of SnO2 surfaces probed by synchrotron X-ray photoelectron spectroscopy.	Physical Chemistry Chemical Physics 21 , 17913- 7922, 2019
Williams, G. V. M., Kennedy, J., Murmu, P. P., Rubanov, S., Chong, S. V.	The effect of different Fe concentrations on the structural and magnetic properties of near surface superparamagnetic $Ni_{1-x}Fe_x$ nanoparticles in SiO_2 made by dual low energy ion implantation.	Journal of Magnetism and Magnetic Materials 473 , 125-130, 2019
Abbaspour, S., Nourbakhsh, A., Ebrahimi, R., Ghayour, H., Mackenzie, K. J. D.	The effect of nanoparticle and mesoporous TiO ₂ additions on the electronic characteristics of reduced graphene oxide nanocomposites with zinc oxide under UV irradiation.	Materials Science and Engineering B: Solid-State Materials for Advanced Technology 246 , 89-95, 2019

AUTHORS	TITLE	JOURNAL
Duhamel, N., Larcher, R., Guella, G., Pilkington, L. I., Fedrizzi, B., Barker, D.	Stereoselective Synthesis of the Spirocyclic Ring System of the Sesquiterpene Spirolepechinene.	Asian Journal of Organic Chemistry 8 , 462-465, 2019
Luong, T. M., Pilkington, L. I., Barker, D.	Stereoselective Total Synthesis of (+)-Aristolactam GI.	Journal of Organic Chemistry 84 , 5747-5756, 2019
Prabowo, S. W., Longbottom, R. J., Monaghan, B. J., del Puerto, D., Ryan, M. J., Bumby, C. W.	Sticking-Free Reduction of Titanomagnetite Ironsand in a Fluidized Bed Reactor.	Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 50 , 1729-1744, 2019
Sliow, A., Ma, Z., Gargiulo, G., Mahns, D., Mawad, D., Breen, P., Stoodley, M., Houang, J., Kuchel, R., Tettamanzi, G.C., Tilley, R.D. , Frost, S.J., Morley, J., Longo, L., Lauto, A.	Stimulation and Repair of Peripheral Nerves Using Bioadhesive Graft-Antenna.	Advanced Science 6 , 1801212, 2019
Zhou, Y., Cink, R. B., Seed, A. J., Simpson, M. C. , Sampson, P., Brasch, N. E.	Stoichiometric Nitroxyl Photorelease Using the (6-Hydroxy-2-naphthalenyl)methyl Phototrigger.	Organic Letters 21 , 1054-1057, 2019
Ashraf, A., Aman, F., Movassaghi, S., Zafar, A., Kubanik, M., Siddiqui, W. A., Reynisson, J., Söhnel, T. , Jamieson, S. M. F., Hanif, M., Hartinger, C. G.	Structural Modifications of the Antiinflammatory Oxicam Scaffold and Preparation of Anticancer Organometallic Compounds.	Organometallics 38 , 361-374, 2019
Khalil, Z., Hill,T., De Leon Rodriguez, L., Lohman, RJ., Hoang, H., Reiling, N., Hillemann, D., Brimble, M. A. , Fairlie, D. Blumenthal, A., Capon, R.	Structure-Activity Relationships of Wollamide Cyclic Hexapeptides with Activity against Drug-resistant and Intracellular Mycobacterium tuberculosis.	Antimicrobial Agents and Chemotherapy 63 , e01773, 2019
Crowther, J. M., Cross, P. J., Oliver, M. R., Leeman, M. M., Bartl, A. J., Weatherhead, A. W., North, R. A., Donovan, K. A., Griffin, M. D. W., Suzuki, H., Hudson, A. O., Kasanmascheff, M., Dobson, R. C. J.	Structure-function analyses of two plant mesodiaminopimelate decarboxylase isoforms reveal that active-site gating provides stereochemical control.	Journal of Biological Chemistry 294 , 8505-8515, 2019
Aletti, A. B., Blasco, S., Aramballi, S. J., Kruger, P. E. , Gunnlaugsson, T.	Sulfate-Templated 2D Anion-Layered Supramolecular Self-Assemblies.	Chem 5 , 2617-2629, 2019
Kalsi, S., Hamilton, K., Buckley, R.G. , Badcock, R.A.	Superconducting AC Homopolar Machines for High-Speed Applications.	Energies 12, 86-100, 2019
Tian, Q., Liu, Q., Zhou, J., Ju, P., Waterhouse, G. I. N., Zhou, S., Ai, S.	Superhydrophobic sponge containing silicone oil- modified layered double hydroxide sheets for rapid oil-water separations.	Colloids and Surfaces A: Physicochemical and Engineering Aspects 570 , 339-346, 2019
Wang, X., Zhou, C., Shi, R., Liu, Q., Waterhouse, G. I. N., Wu, L., Tung, CH., Zhang, T.	Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance.	Nano Research 12 , 2385-2389, 2019
Ingham, B., Holmes-Hewett, W., Ko, M., Kirby, N. M., Sk, M. H., Abdullah, A. M., Laycock, N. J., Williams, D. E.	Surface layer formation in the earliest stages of corrosion of steel in CO_2 -saturated brine at 80°C: Studied by in situ synchrotron x-ray methods.	Journal of the Electrochemical Society 165 , C842-C847, 2018
Ridings, K. M., Aldershof, T. S., Hendy, S. C.	Surface melting and breakup of metal nanowires: Theory and molecular dynamics simulation.	Journal of Chemical Physics 150 , 094705, 2019
Zhang, T., Ye, J., Arul, R., Yang, T., Wang, Y., Yue, X., Schaefer, M., Simpson, C., Nieuwoudt, M. K. , Huang, S., Wei, S., Gao, W.	Surface-enhanced Raman scattering (SERS) by Ag nanoparticles on anodized $\text{TiO}_{_{2:X}}$ nanotubes.	International Journal of Modern Physics B 34 , 2040009, 2019
Bian, G., Wang, X., Kowalczyk, P. J., Märkl, T., Brown, S. A. , Chiang, TC.	Survey of electronic structure of Bi and Sb thin films by first-principles calculations and photoemission measurements.	<i>Journal of Physics and Chemistry of Solids</i> 129 , 109, 2019
Berg, A. I., Brivio, S., Brown, S. , Burr, G., Deswal, S., Deuermeier, J., Gale, E., Hwang, H., Ielmini, D., Indiveri, G., Kenyon, A. J., Kiazadeh, A., Köymen, I., Kozicki, M., Li, Y., Mannion, D., Prodromakis, T., Ricciardi, C., Siegel, S., Speckbacher, M., Valov, I., Wang, W., Williams, R. S., Wouters, D., Yang, Y.	Synaptic and neuromorphic functions: general discussion.	Faraday Discussions 213 , 553-578, 2019
Bose, S. K., Shirai, S., Mallinson, J. B., Brown, S. A.	Synaptic dynamics in complex self-assembled nanoparticle networks.	Faraday Discussions 213 , 471-485, 2019

IOUDNAL

AUTHORS	TITLE	JOURNAL
Soffe, R., Nock, V. , Chase, J. G.	Towards Point-of-Care Insulin Detection.	ACS Sensors 4 , 3-19, 2019
Mukherjee, S., Sikdar, N., O'Nolan, D., Franz, D. M., Gascón, V., Kumar, A., Kumar, N., Scott, H. S., Madden, D. G., Kruger, P. E. , Space, B., Zaworotko, M. J.	Trace CO ₂ capture by an ultramicroporous physisorbent with low water affinity.	ScienceAdvances 5 , eaax9171, 2019
Jobbitt, N. L., Patchett, S. J., Alizadeh, Y., Reid, M. F. , Wells, JP. R., Horvath, S. P., Longdell, J. J., Ferrier, A., Goldner, P.	Transferability of Crystal-Field Parameters for Rare-Earth Ions in Y_2SiO_5 Tested by Zeeman Spectroscopy.	Physics of the Solid State 61 , 780-784, 2019
Mapley, J. I., Ross, D. A. W., McAdam, C. J., Gordon, K. C., Crowley, J. D.	Triphenylamine-substituted 2-pyridyl-1,2,3- triazole copper(I) complexes: an experimental and computational investigation.	Journal of Coordination Chemistry 72 , 1378-1394, 2019
Alkaş, A., Cornelio, J., Telfer, S. G.	Tritopic Triazatruxene Ligands for Multicomponent Metal-Organic Frameworks.	Chemistry - An Asian Journal 14 , 74, 2018
Evans, J. J., Alkaisi, M. M., Sykes, P. H.	Tumour Initiation: a Discussion on Evidence for a "Load-Trigger" Mechanism.	Cell Biochemistry and Biophysics 77, 293-308, 2019
McNulty, J. F., Anton, EM., Ruck, B. J. , Suzuki, M., Mizumaki, M., Trodahl, H. J.	Tunable magnetic exchange springs in semiconductor GdN/NdN superlattices.	<i>Physical Review B</i> 100 , 094441, 2019
Yang, H., Chen, X., Chen, WT., Wang, Q., Cuello, N. C., Nafady, A., Al-Enizi, A. M., Waterhouse, G. I. N., Goenaga, G. A., Zawodzinski, T. A., Kruger, P. E., Clements, J. E., Zhang, J., Tian, H., Telfer, S. G., Ma, S.	Tunable Synthesis of Hollow Metal-Nitrogen- Carbon Capsules for Efficient Oxygen Reduction Catalysis in Proton Exchange Membrane Fuel Cells.	ACS Nano 13 , 8087-8098, 2019
Ding, B., Zhang, Z., Chen, YH., Zhang, Y., Blaikie, R. J. , Qiu, M.	Tunable Valley Polarized Plasmon-Exciton Polaritons in Two-Dimensional Semiconductors.	ACS Nano 13 , 1333-1341, 2019
Gilmour, J. T. A., Gaston, N.	Tuneable magnetic moments in superatomic $Cu_x Ni_{s-x}$ clusters.	Electronic Structure 1, 035003, 2019
Zhao, Y., Zhao, Y., Shi, R., Wang, B., Waterhouse, G. I. N. , Wu, LZ., Tung, CH., Zhang, T.	Tuning Oxygen Vacancies in Ultrathin TiO ₂ Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm.	Advanced Materials 31 , 1806482, 2019
Tamming, R. R., Butkus, J., Price, M. B., Vashishtha, P., Prasad, S. K. K., Halpert, J. E., Chen, K., Hodgkiss, J. M.	Ultrafast Spectrally Resolved Photoinduced Complex Refractive Index Changes in CsPbBr ₃ Perovskites.	ACS Photonics 6 , 345-350, 2019
Ning, S., Zhou, M., Liu, C., Waterhouse, G. I. N. , Dong, J., Ai, S.	Ultrasensitive electrochemical immunosensor for avian leukosis virus detection based on a β -cyclodextrin-nanogold-ferrocene host-guest label for signal amplification.	Analytica Chimica Acta 1062 , 87-93, 2019
Zhang, Y., Zhang, C., Xu, C., Wang, X., Liu, C., Waterhouse, G. I. N. , Wang, Y., Yin, H.	Ultrasmall Au nanoclusters for biomedical and biosensing applications: A mini-review.	Talanta 200 , 432-442, 2019
Zhang, Q., Webster, R.F., Cheong, S., Tilley, R.D. , Lu, X., Amal, R.	Ultrathin Fe-N-C Nanosheets Coordinated Fe-Doped CoNi Alloy Nanoparticles for Electrochemical Water Splitting.	Particle and Particle Systems Characterization 36 1800252, 2019
Zhang, H., Yang, Z., Wang, X., Yan, S., Zhou, T., Zhang, C., Telfer, S. G. , Liu, S.	Uniform copper-cobalt phosphides embedded in N-doped carbon frameworks as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries.	Nanoscale 11 , 17385-17395, 2019
Guehne, R., Chlan, V., Williams, G. V. M., Chong, S. V. , Kadowaki, K., Pöppl, A., Haase, J.	Unusual ²⁰⁹ Bi NMR quadrupole effects in topological insulator Bi ₂ Se ₃ .	Journal of Magnetic Resonance 302 , 34-42, 2019
Sultana, N., Al Amin, A., Metin, D. Z., Gaston, N.	Unveiling the structures and electronic properties of CH ₃ NH ₃ PbI ₃ interfaces with TiO ₂ , ZnO, and SnO ₂ : a first-principles study.	Journal of Materials Science 54 , 13594-13608, 201
Gangotra, A., Biviano, M., Dagastine, R. R., Berry, J. D., Willmott, G. R.	Use of microaspiration to study the mechanical properties of polymer gel microparticles.	Soft Matter 15 , 7286, 2019
Cairns, M. J., Mesic, B., Johnston, J. H. , Herzog, M. B.	Use of spherical silica particles to improve the barrier performance of coated paper.	Nordic Pulp and Paper Research Journal, 2019
Li, F. F., Brimble, M. A.	Using Chemical Synthesis to Optimise Antimicrobial Peptides in the Fight against Antimicrobial Resistance.	Pure and Applied Chemistry 91 , 181-198, 2019

AUTHORS	TITLE	JOURNAL
Bioletti, G., Williams, G. V. M. , Susner, M. A., Haugan, T. J., Uhrig, D. M., Chong, S. V.	The effect of pressure and doping on the critical current density in nickel doped BaFe ₂ As ₂ .	Superconductor Science and Technology 32 , 2019
Zhang, T., Liu, Y., Christopher, T. D., Huang, S., Söhnel, T. , Song, X., Gao, W., Cao, P.	The effect of water vapor on structure and electrochemical performance of an aluminum-free niobium-doped garnet electrolyte.	Ceramics International 46 , 3889-3895, 2019
Conte, L., Zhou, TY., Qazvini, O. T., Liu, L., Turner, D. R., Telfer, S. G. , Richardson, C.	The Elusive Nitro-Functionalised Member of the IRMOF-9 Family.	Australian Journal of Chemistry 72 , 811-816, 2019
Sarwar, M., Sykes, P. H., Chitcholtan, K., Alkaisi, M. M., Evans, J. J.	The extracellular topographical environment influences ovarian cancer cell behaviour.	Biochemical and Biophysical Research Communications 508 , 1188-1194, 2019
Wen, B., Waterhouse, G. I. N. , Jia, MY., Jiang, XH., Zhang, ZM., Yu, LM.	The feasibility of polyaniline-TiO ₂ coatings for photocathodic antifouling: antibacterial effect.	Synthetic Metals 257 , 116175, 2019
Boonprab, T., Lee, S. J., Telfer, S. G. , Murray, K. S., Phonsri, W., Chastanet, G., Collet, E., Trzop, E., Jameson, G. N. L., Harding, P., Harding, D. J.	The First Observation of Hidden Hysteresis in an Iron(III) Spin-Crossover Complex.	Angewandte Chemie - International Edition 58 , 11811-11815, 2019
Gilkes, J. M., Sheen, C. R., Frampton, R. A., Smith, G. R., Dobson, R. C. J.	The First Purification of Functional Proteins from the Unculturable, Genome-Reduced, Bottlenecked α -Proteobacterium 'Candidatus Liberibacter solanacearum'.	Phytopathology 109 , 1141-1148, 2019
Coombes, D., Moir, J. W. B., Poole, A. M., Cooper, T. F., Dobson, R. C. J.	The fitness challenge of studying molecular adaptation.	Biochemical Society Transactions 47 , 1533-1542, 2019
Wang, W., Gaus, K., Tilley, R.D. , Gooding, J.J.	The impact of nanoparticle shape on cellular internalisation and transport: What do the different analysis methods tell us?	Materials Horizons 6 , 1538-1547, 2019
Aqrawe, Z., Wright, B., Patel, N., Vyas, Y., Malmström, J., Montgomery, J. M., Williams, D., Travas-Sejdic, J., Svirskis, D.	The influence of macropores on PEDOT/PSS microelectrode coatings for neuronal recording and stimulation.	Sensors and Actuators B: Chemical 281 , 549-560, 2019
Tarling, M. S., Smith, S. A. F., Scott, J. M., Rooney, J. S., Viti, C., Gordon, K. C.	The internal structure and composition of a plate- boundary-scale serpentinite shear zone: The Livingstone Fault, New Zealand.	Solid Earth 10 , 1025-1047, 2019
Jovic, V., Moser, S., Papadogianni, A., Koch, R. J., Rossi, A., Jozwiak, C., Bostwick, A., Rotenberg, E., Kennedy, J. V., Bierwagen, O., Smith, K. E.	The Itinerant 2D Electron Gas of the Indium Oxide (111) Surface: Implications for Carbon- and Energy- Conversion Applications.	Small, 1903321, 2019
Mantravadi, P. K., Kalesh, K. A., Dobson, R. C. J. , Hudson, A. O., Parthasarathy, A.	The quest for novel antimicrobial compounds: Emerging trends in research, development, and technologies.	Antibiotics 8 , 8, 2019
Fusi, F., Bova, S., Saponara, S., Trezza, A., Spiga, O., Hopkins, B., Rennison, D., Brimble, M. A.	The Selective Rat Toxicant Norbormide Blocks K_{ATP} Channels in Smooth Muscle Cells but not in Insulin-Secreting Cells.	Frontiers in Pharmacology 10 , 598, 2019
Alshawawreh, F., Lisi, F., Ariotti, N., Bakthavathsalam, P., Benedetti, T., Tilley, R.D. , Gooding, J.J.	The use of a personal glucose meter for detecting procalcitonin through glucose encapsulated within liposomes.	Analyst 144 , 6225-6230, 2019
Uhrig, D. M., Williams, G. V. M. , Bioletti, G., Chong, S. V.	Thermal post processing of $\text{FeSe}_{1:x}\text{Te}_x$: formation of surface iron oxides and enhancement of J _c .	Superconductor Science and Technology 32 , 2019
Geiregat, P., Tomar, R., Chen, K., Singh, S., Hodgkiss, J. M., Hens, Z.	Thermodynamic Equilibrium between Excitons and Excitonic Molecules Dictates Optical Gain in Colloidal CdSe Quantum Wells.	Journal of Physical Chemistry Letters 10 , 3637- 3644, 2019
Steenbergen, K. G., Gaston, N.	Thickness dependent thermal stability of 2D gallenene.	Chemical Communications 55 , 8872-8875, 2019
Kasim, J. K., Harris, P. W. R., Kavianinia, I., Brimble, M. A.	Three Decades of Amyloid Beta Synthesis: Challenges and Advances.	Frontiers in Chemistry - Chemical Biology 7 , 472, 2019
Wilson, R. K., Dhers, S., Sproules, S., McInnes, E. J. L., Brooker, S.	Three Manganese Complexes of Anionic N_4 -Donor Schiff-Base Macrocycles: Monomeric Mn^{II} and Mn^{III} , and dimeric Mn^{IV} .	Australian Journal of Chemistry 72 , 805-810, 2019
Zong, F., Bickelhaupt, S., Kuder, T. A., Lederer, W., Daniel, H., Stieber, A., Schlemmer, HP., Galvosas, P. , Laun, F. B.	Threshold Isocontouring on High b-Value Diffusion-Weighted Images in Magnetic Resonance Mammography.	Journal of Computer Assisted Tomography 43 , 434-442, 2019

Chapters

AUTHORS	CHAPTER TITLE	BOOK TITLE
Kalsi, S. S., Storey, J. , Hamilton, K. & Badcock, R. A.	Propulsion motor concepts for airplanes	AIAA Propulsion and Energy 2019 Forum
Cotton, G. C., Lagesse, N. R., Parke, L. S. & Meledandri, C. J.	3.04 - Antibacterial Nanoparticles	Comprehensive Nanoscience and Nanotechnology (Second Edition)
Whitby, C. P.	3.07 - Nanoparticles at fluid interfaces: from surface properties to biomedical applications	Comprehensive Nanoscience and Nanotechnology (Second Edition)
Gangotra, A. & Willmott, G. R.	3.12 - Cellular and Sub-Cellular Mechanics: Measurement of Material Properties	Comprehensive Nanoscience and Nanotechnology (Second Edition)

Books

AUTHOR	BOOK TITLE
Hendy, S.C.	#NoFly: Walking the Talk on

AUTHORS	TITLE	JOURNAL
James, A., McLeod, J., Hendy, S. , Marks, K., Rusu, D., Nik, S., Plank, M. J.	Using family network data in child protection services.	<i>PLOS ONE</i> 14 , e0224554, 2019
Doroshenko, A., Budarin, V., McElroy, R., Hunt, A. J., Rylott, E., Anderson, C., Waterland, M. , Clark, J.	Using in vivo nickel to direct the pyrolysis of hyperaccumulator plant biomass.	Green Chemistry 21, 1236-1240, 2019
Webb, D., Fulton, J. R.	Utilising an anilido-imino ligand to stabilise zinc- phosphanide complexes: reactivity and fluorescent properties.	Dalton Transactions 48 , 8094-8105, 2019
Sutton, J. J., Nguyen, T. L., Woo, H. Y., Gordon, K. C.	Variable-Temperature Resonance Raman Studies to Probe Interchain Ordering for Semiconducting Conjugated Polymers with Different Chain Curvature.	Chemistry - An Asian Journal 14 , 1175-1183, 2019
Jia, C., Waterhouse, G. I. N. , Sun-Waterhouse, D., Sun, Y. G., Wu, P.	Variety–compound–quality relationship of 12 sweet cherry varieties by HPLC-chemometric analysis.	International Journal of Food Science and Technology 54 , 2897-2914, 2019
Svendsen, J., Grant, T., Rennison, D., Brimble, M. A.	Very Short and Stable Lactoferricin Derived Antimicrobial Peptides: Design Principles and Potential Uses.	Accounts of Chemical Research 52 , 749-759, 2019
Hedwig, G. R., Jameson, G. B. , Høiland, H.	Volumetric Properties of the Nucleosides Adenosine, Cytidine, and Uridine in Aqueous Solution at $T = (288.15 \text{ and } 313.15) \text{ K}$ and $p = (10 \text{ to} 100) \text{ MPa}$.	Journal of Solution Chemistry 48 , 180-199, 2019
Barnsley, J. E., Pelet, W., McAdam, J., Wagner, K., Hayes, P., Officer, D. L., Wagner, P., Gordon, K. C.	When 'donor-Acceptor' Dyes Delocalize: A Spectroscopic and Computational Study of D-A Dyes Using 'michler's Base'.	<i>Journal of Physical Chemistry A</i> 123 , 5957-5968, 2019
Li, Y., Xu, M., Yin, H., Shi, W., Waterhouse, G. I. N., Li, H., Ai, S.	Yolk-shell Fe ₃ O ₄ nanoparticles loaded on persimmon-derived porous carbon for supercapacitor assembly and As (V) removal.	Journal of Alloys and Compounds 810 , 151887, 2019
Ge, Y., Li, C., Jiang, X., Waterhouse, G. I. N. , Zhang, L., Zhang, Z., Yu, L.	ZnFe ₂ O ₄ @ Polypyrrole nanocomposites as an efficient broadband electromagnetic wave absorber at 2–40 GHz.	Ceramics International 45 , 13883-13893, 2019

PUBLISHER

n Climate Change

Bridget Williams Books

Conference papers

AUTHORS	PAPER TITLE	TITLE OF PROCEEDINGS
Sun, Y., Tayagui, A., Shearer, H., Garrill, A., Nock, V.	A microfluidic platform with integrated sensing pillars for protrusive force measurements on neurospora crassa	Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2018)
Aref, S., Friggens, D., Hendy, S.	Analysing scientific collaborations of New Zealand institutions using scopus bibliometric data	ACM International Conference Proceeding Series (2018)
Risos, A., Broderick, N.G.R., Williams, D.E. , Simpson, M.C.	Critical setup parameter for ultrafast whitelight coherent antistokes raman scattering spectroscopy of living plankton in sea water	Proceedings of SPIE - The International Society for Optical Engineering (2018)
Prabowo, S., Bumby, C ., Monaghan, B., Del Puerto, D., Ryan, M., Longbottom, R.	Design and Commissioning of an Experimental Fluidized Bed Reactor for the Hydrogen Reduction of Titanomagnetite Ironsand	Proceedings of the 8th international congress on the science and technology of ironmaking (2018)
Moghaddam, S.M., Piraghaj, S.F., O'Sullivan, M., Walker, C., Unsworth, C.P.	Energy-efficient and SLA-aware Virtual Machine Selection Algorithm for Dynamic Resource Allocation in Cloud Data Centers	11th IEEE/ACM Conference on Utility and Cloud Computing (2018)
Amalathas, A.P., Alkaisi, M.M.	Enhancing the performance of solar cells with inverted nanopyramid structures fabricated by UV nanoimprint lithography	2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (2018)
Mehta, M., Waterland, M.R.	Highly sensitive surface-enhanced Raman scattering detection of brodifacoum and 1080 rodenticide in milk	Proceedings of SPIE - The International Society for Optical Engineering (2018)
McIntosh, G.J., Wijayaratne, H., Agbenyegah, G.E.K., Hyland, M.M., Metson, J.B.	Impacts of sodium on alumina quality and consequences for current efficiency	Minerals, Metals and Materials Series (2018)
Sturov, E., Bumby, C.W. , Rayudu, R., Badcock, R.A.	Influence of fluid selection on synchronous generators power output in compressed air energy storage systems	2017 IEEE Innovative Smart Grid Technologies - Asia: Smart Grid for Smart Community
Panya Panya, S.N., Galmed, A.H., Maaza, M., Mothudi, B.M., Harith, M.A., Kennedy, J.	Laser-Induced Breakdown Spectroscopy (LIBS) on Geological Samples: Compositional Differentiation	MRS Advances (2018)
Hassan Sk, M., Abdullah, A.M., Ryan, M.P., Ko, M., Williams, D.E. , Laycock, N., Ingham, B.	Mo-mediated corrosion behaviour of 1 Cr - Carbon steel in sweet medium under hydrodynamic control	NACE - International Corrosion Conference Series (2018)
Makin, R.A., York, K., Senabulya, N., Mathis, J., Clarke, R., Feldberg, N., Miska, P., Jones, C.M., Williams, L., Kioupakis, E., Reeves, R ., Durbin, S.M.	Order Parameter and Band Gap of $\rm ZnSnN_2$	7th IEEE World Conference on Photovoltaic Energy Conversion (2018)
Bjareborn, O., Bumby, C ., Ryan, M., Longbottom, R., Mongagan, B.	Phase Development of Titanomagnetite Ironsand During Oxidizing Conditions.	Proceedings of the 8th international congress on the science and technology of ironmaking (2018)
Khadka, R., Zondaka, Z., Travas-Sejdic, J. , Гamm, T., Kiefer, R.	Polypyrrole with polyethylene oxide: Linear actuation in organic and aqueous electrolytes	Proceedings of SPIE - The International Society for Optical Engineering (2018)
Sturov, E., Bumby, C.W ., Rayudu, R., Badcock, R.A.	Rapid synchronisation procedure for a pneumo- hydraulically driven synchronous generator	2017 IEEE Innovative Smart Grid Technologies - Asia: Smart Grid for Smart Community
Zhang, A., Nusheh, M., Longbottom, R., Bumby, C., Monaghan, B.	Reduction of Titanohematite Pellets by Hydrogen Gas	Proceedings of the 8th international congress on the science and technology of ironmaking (2018)
Mallett, B.P.P., Marsik, P., Khmaladze, J., Arul, R., Simpson, M.C., Bernhard, C.	Superconductor sandwiches: Cuprate-manganite multilayers with a remarkable new ground state	Proceedings of SPIE - The International Society for Optical Engineering (2018)

Keynote & invited speaker addresses

NAME	DETAILS
David Barker	Keynote talk at the 24 th Inter September 2019, Queenstow
Margaret Brimble	Plenary lecture at 9 th Interna 14 February 2019, Wellington
	Plenary lecture at 44 th Lorne Australia
	Plenary lecture at Dewar Lec
	Plenary lecture at RSC Georg Warwick, UK
	Plenary lecture at Sosnovsky Milwaukee, United States
	Plenary lecture at XX th Tetra
	Plenary lecture at ACS MEDI
	Plenary lecture at American Under-privileged Functional Chemistry/Organic Letters S
	Plenary lecture at European in Synthetic and Medicinal G
	Plenary lecture at 13 th Austra
	Plenary lecture at the New Z Christchurch, New Zealand
	Plenary lecture at 5 th Annual
Chris Bumby	Invited lecture at the 32 nd Int Kyoto, Japan
Matthew Cowan	Keynote talk at the New Zeal Christchurch, New Zealand
James Crowley	Keynote talk at the at New Z Christchurch, New Zealand
	Keynote talk at the RSC Mac 2019, Canterbury, UK
Alison Downard	Keynote talk at the New Zeal Christchurch, New Zealand
Petrik Galvosas	Invited speaker at 21st ISMAF
	Invited speaker at the Farew Size Matter?" 25 October 201
	Keynote talk at the 2 nd works (NMR). 5-6 November 2019, 1
Keith Gordon	Invited speaker at the New Z Christchurch, New Zealand
	Invited speaker at the 8th As University of Hong Kong, He
	Invited speaker at SciX 2019
	Invited speaker at pre-confe Vibrational (ICAVS10). 7-12 J
	Invited lectures as part of th Includes lectures in Brisban Auckland, Hamilton, Palmer
Justin Hodgkiss	Invited lecture at the 20 th Int

rnational Clean Air and Environment conference (CASANZ 2019). 16-18 vn, New Zealand

ational Conference on Advanced Materials and Nanotechnology (AMN9). 10on, New Zealand

e Conference on Protein Structure and Function. 10-14 February 2019, Lorne,

ctureship. 5 May 2019, Queen Mary University London, UK

ge and Christine Sosnovsky Award Lectureship. 26 April 2019, Newcastle,

y Distinguished Lectureship. 26 April 2019, University of Wisconsin,

ahedron Symposium. 18-21 June 2019, Bangkok, Thailand

DICHEM Hall of Fame Ceremony. August 2019, San Diego, United States

n Chemical Society Fall Meeting MedChem Toolbox Session Privileged and al Groups in Drug Design; American Chemical Society Journal of Organic Symposium. August 2019, San Diego, United States

n Federation of Medicinal Chemistry International Symposium on Advances Chemistry (EFMC-ASMC19). 1-5 September 2019, Athens, Greece

alian Peptide Conference. 8-13 September 2019, Port Douglas, Australia

Zealand Institute of Chemistry Conference 2019. 24-28 November 2019,

al Peptides and Proteins Symposium. 12-13 December 2019, Singapore

ternational Superconductivity Symposium (ISS2019). 3-5 December 2019,

aland Institute of Chemistry Conference 2019. 24-28 November 2019,

Zealand Institute of Chemistry Conference 2019. 24-28 November 2019,

crocyclic and Supramolecular Chemistry Meeting 2019. 16-17 December

aland Institute of Chemistry Conference 2019. 24-28 November 2019,

AR – 15th EUROMAR joint conference. 25-30 August 2019, Berlin, Germany

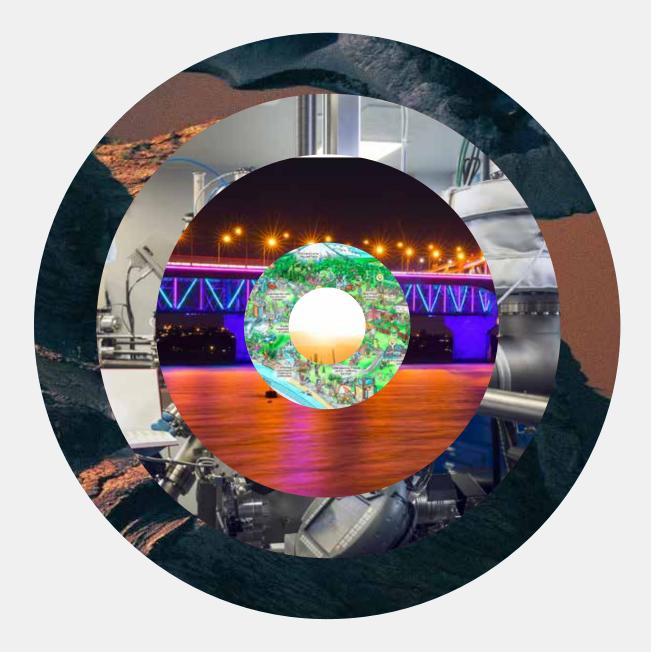
vell Symposium for dr. Henk Van As "NMR/MRI, Plants and Foods: Does 19, Wageningen, the Netherlands

shop on novel applications for low field Nuclear Magnetic Resonance Rio de Janeiro, Brazil

Zealand Institute of Chemistry Conference 2019. 24-28 November 2019,

sian Spectroscopy Conference 2019 (ASC 2019). 1-4 December 2019, long Kong

Conference. 13-19 October 2019, Palm Springs, USA (2 talks)


erence workshop at the 10th International Conference on Advanced July 2019, Auckland, New Zealand

ne Royal Society of Chemistry (UK) Australasian lectureship 2019 and 2020. ne, Darwin, Adelaide, Melbourne, Sydney, Wollongong, Canberra, Perth, erston North, Wellington, Dunedin, Christchurch

iternational Conference on Dynamical Processes in Excited States of Solids. hurch, New Zealand

NAME	DETAILS		
Eric Le Ru	Plenary lecture in the opening session of the 2nd International Conference on SERS. 2-9 November 2019, Suzhou, China		
Carla Meledandri	Keynote talk at the 9 th International Colloids Conference. 16-19 June 2019, Sitges, Spain		
Jim Metson	Keynote talk at the IUPAC 50 th General Assembly and 47th World Chemistry Congress. 5-12 July 2019, Paris, France		
Cather Simpson	Keynote talk at 9th International Conference on Advanced Materials and Nanotechnology (AMN9). 10- 14 February 2019, Wellington, New Zealand		
	Public lecture for the Perimeter Institute for Theoretical Physics. 6 March 2019, Waterloo, Canada		
	Keynote talk at the Perimeter Institute for Theoretical Physics Inspiring Future Women in Science Conference 2019. 7 March 2019, Waterloo, Canada.		
	Keynote talk at 19th New Zealand Institute of Physics (NZIP) Conference and Physikos, the New Zealand Physics' Teachers Conference. 15-17 April 2019, Christchurch, New Zealand		
	Invited speaker at 2019 UNESCO-ICTP Illuminating Education Conference. 16 May 2019, Trieste, Italy		
	Keynote talk at 2019 IEEE International Instrumentation & Measurement Technology Conference (I2MTC). 20-23 May 2019, Auckland, New Zealand		
	Keynote talk at ConSTANZ19. 8-10 October 2019, Wellington, New Zealand		
	Keynote talk at MESA Bootcamp 2019. 22-25 October 2019, Waihi, New Zealand		
Shane Telfer	Keynote talk at the Inorganic Chemistry Conference IC19. 15-19 December 2019, Wollongong, Australia		
Catherine Whitby	Keynote talk at Okinawa Colloids 2019. 3-8 November 2019, Okinawa, Japan		

macdiarmid.ac.nz