MacDiarmid Institute Annual Report **2022**

MacDiarmid Institute Annual Report 2022

Twenty years at the forefront of 2002 - 2022

materials research

Contents

Co-Directors' report – 6 Board Chair's report – 7 From the inaugural Chair — 8 The numbers – 9 It all started with a paper napkin -First Director's piece 2003 – 16 The changing face of the MacDiarmi Institute — 18 AMN conferences through the ages -Looking ahead to the next 20 years

Te Moana Nui a Kiwa — 26

20 years through a Mātauranga Māo Whakarewarewa Living Village — 30 Discovery Scholarships — 31 Rhodes Trust trip to Oxford – 32

Out of the lab -34

Journal articles — 38 Word clouds – 40 Our research programmes over the years – 42 Awards — 44 Funding successes — 45

Into the marketplace – 48

20 years of commercialisation and industry engagement — 50 KiwiNet winners — 53 Spin-outs formed in 2022 - 55 Alumni business scholar recipients and where they are now — 56 Patent applications — 61 Early funding to underpin commercial success - 62

Into the community – 64

DiscoveryCamp over the years – 66 NanoCamp over the years -68From the lab bench to a start-up company -70Developing a scientifically-literate workforce – 72

	Into the future — 74
	20 years of alumni — 76
	MESA is born — 80
	2022 MESA report — 82
10	Wellbeing within the Institute – 84
	Career internships — 85
id	
	Into the metrics – 86
- 20	Financials — 88
- 24	At a glance — 89
	Board, executive, staff and students — 90
	Journal covers — 98
ori lens — 28	Publications — 99
)	Books — 120
	Book chapters — 120
	Conference papers — 121
	Keynote and invited speaker addresses — 122

Nicola Gaston and Justin Hodgkiss Co-Directors

6

When the MacDiarmid Institute turned 20 years old in 2022, we took the opportunity to celebrate what the Institute has achieved so far, and to look forward to the next 20 years.

This annual report shares our stories and achievements from 2022 and puts them in the context of our 20-year journey so far.

In his first MacDiarmid Interface piece included in this report - Sir Paul Callaghan outlined his vision for a national scale centre; a centre with a commitment to partnership within New Zealand's research sector, and one with the ambition to change New Zealand's social and economic culture.

The weight of Sir Paul's ideas is measured by the profound impact they've had over the past two decades. Few of us today will have read those words in 2002, but that we are living them is what really matters.

Take economic culture change: the research entrepreneurialism that Sir Paul envisaged is now completely part of our DNA, and you will find plenty of evidence of that in this report.

Sir Paul understood that there was much work to do when it came to meeting the aspirations of Māori through science. Structural change internally and strong long-term partnerships mean that that work is now flourishing in the Institute more than ever before.

Public engagement has always been a strength of the MacDiarmid Institute. Today, through partnership and empowering our people, the reach and depth of our engagement is having the positive influence that Sir Paul imagined.

Sir Paul spoke in 2002 about the buzz of new faces arriving, and new ideas to explore. The research profiles in this report illustrates that today's MacDiarmid Institute still has that sense of renewal in abundance.

Hēmi Rolleston Board Chair

Tēna koutou katoa

It is my absolute privilege to provide you with my first Chair's Report. Let me start by acknowledging the previous Chair Paul Atkins. It was a pleasure to work under Paul's Chairmanship on the Board as he steered our waka through to the success it is today. Paul had a significant role in leading us through our successful rebid and we are extremely grateful to him for leading the Institute through such a crucial time.

Board Chair

lan Watson Steve Thompson Ray Thompson Paul Atkins Hēmi Rolleston

Paul Callaghan

January 2022 - present Directors / Co-Directors **Time in Position** 2002-2007 2008 - 2011

2011 - 2015

2015 - 2017 2018 - present

2018 - present

Time in position

2002 - Dec 2009

Jan 2010 - Dec 2014

Jan 2015 - Dec 2017

Jan 2018 - Dec 2021

Richard Blaikie Kate McGrath Thomas Nann Nicola Gaston Justin Hodgkiss

Deputy Directors Time in Position Richard Blaikie 2002 - 2007 Shaun Hendy 2008 - 2011 Simon Brown 2011 - 2013 David Williams 2013 - 2015 Alison Downard 2013 - 2015 2015 - 2017 Nicola Gaston Justin Hodgkiss 2015 - 2017 Franck Natali 2018 - 2019 Geoff Willmott 2018 - present Paul Kruger 2019 - present Pauline Harris 2022 - present

This year we celebrate our 20th birthday. We acknowledge the legacy and the successes of the past as we navigate a challenging yet exciting future, and see the role that the Institute can play in this. In my mihi at the birthday event I made particular mention to those who have played a key role over the 20 years (see the table above) to remind us where we have come from. Earlier that day we had stretched our minds to challenge our thinking of what a future structure in the Institute would look like, allowing the structure and size of the Institute to give us freedom to imagine the future. I have

I am impressed by the calibre of commitment, passion and leadership among all of those working for the Institute. As someone who has a day job within the science system, I can certainly vouch for the strong reputation the Institute has within the ecosystem. I am extremely heartened by the focus we have on rangatahi and the efforts we are applying to bring through the next generation of science leaders.

always been clear in my time on the Board that Te Ao Māori can play a key role in the future of the Institute, and the Board has been always very supportive of this.

As I look across the Institute's vision and work, I am extremely heartened by the mahi I see. The Institute's four new research programmes leading Aotearoa New Zealand towards Zero Carbon, Zero Waste, Low Energy Tech and Sustainable Resource Use are truly inspiring. I can't think of a more worthwhile area to apply the minds and hearts of the MacDiarmid Institute's researchers than to support Aotearoa New Zealand and the world out of this climate emergency. And I again acknowledge the brilliance and foresight of the Institute's founder, Sir Paul Callaghan, who 20 years ago when he set up the Institute, saw the critical state of the planet and knew the vital role a materials science institute would play in mitigating this coming crisis.

I thank the Board for the support you have given me and the Institute, and the Directors for your excellent mahi as always. I also acknowledge the management team who make everything happen. A huge thank you to you all.

I invite you to read these stories of continued science excellence, key collaborations with our Māori partners, commercialisation of materials research through startups and with industry, the drive to improve public understanding of technology for sustainability, and the creation of a high-earning NZ-trained science workforce.

From the inaugural Chair

lan Watson

Our founding Chair Ian Watson looks back at the 20 years of the Institute.

I congratulate the MacDiarmid Institute on its longevity in such a competitive environment. Looking back, I believe it was because from day one all of its members worked as a team, worked in pursuit of excellence, shared high ethical values and had a strong sense of social responsibility. Further, the modus operandi was collegial. In these ways, the Institute rapidly built up an enviable track record on which, as its survival shows, it has clearly subsequently built further upon.

A key figure in all of this was Sir Paul Callaghan. There is no doubt that his goals of academic excellence and economic relevance, coupled with his charisma and charm, were a source of inspiration for the Institute. They were also a source of admiration for internationally renowned scientists, local politicians, local businesspeople, and university administrators alike.

Had he read the above, Paul would have chided me for once again going over the top. He would, however, have strongly endorsed my next remarks, which is much of the success was due to that first group of Institute members who over its first five years shaped its structure, culture and ethos. Here I would like to especially acknowledge Richard Blaikie, Shaun Hendy, Kate McGrath and Jeff Tallon.

The Institute was born out of the fusing of two CoRE (Centre of Research Excellence) bids from Canterbury and Victoria University of Wellington (VUW) into one. The only two universities in New Zealand, by the way, who have each produced a Nobel Laureate. The fact that the two universities were prepared to act in this way is remarkable and it is appropriate to thank them both for being prepared to do so. Later, like most of the CoREs, it involved

scientists from most other New Zealand universities. Such co-operation has not gone unnoticed and is a major reason why the CoRE concept still finds favour.

"From day one all worked as a team, worked in pursuit of excellence, shared high ethical values and had a strong sense of social responsibility"

The merger also underscored the vital role played by both Canterbury and VUW in universities establishing a research culture at all. Until the mid 1960s, students at the master's level at any university college were rare and PhDs even rarer. In the 1940s a group of reformers including academics from Canterbury and Victoria began agitating for a greater research component which took until the mid 1970s to take hold, at least to the point where scientists like Paul Callaghan chose to make their careers in New Zealand rather than overseas. It took until the mid 1990s for research to be better though still inadequately funded through such instruments as the Marsden Fund and, in 2002, the CoREs themselves. Here, acknowledgment of the Royal Society of New Zealand is in order.

As someone who was, in the early 1960s, a colleague one of the reformers, Hugh Parton and, in the 1970s and '80s a colleague of one of the best practitioners of the result of their dream, Paul Callaghan, it has been a great thrill to see what this Institute has achieved thus far. There is, of course, more to be done. But of all the institutes currently in place, I believe this one is the best placed to further advance that dream. Congratulations again.

Ian Watson was the foundation chair of the MacDiarmid Institute from 2002 to 2009. At the time of appointment he was Principal of the Albany Campus of Massey University, a post he held from 1992 until his retirement in 2003. Between 1988 and 1994 he was the inaugural Assistant Vice-Chancellor (Research) of Massey University.

Before that he was an Associate Professor in the Department of Chemistry, Biochemistry and Biophysics at Massey University whose research interest was in the Thermodynamics of Solutions.

Ian was the Deputy Chair of the Foundation of Research, Science and Technology between 1992 and 1996, and is a Fellow of the Institute of Chemistry. In 2004 he was awarded an Honorary Doctor of Science Degree by Massey University.

At a personal level, Ian and his wife, Patsy, recently celebrated their 61st wedding anniversary. They have three children and five grandchildren

From 2002 - 2022

758

PhD graduates

affiliated start-up companies created

research alumni

inventions patented

AMN conference attendees

It all started with a paper napkin

Curators House. Photo by Simon Brown

Prettily situated at the edge of the Christchurch Botanic Gardens, the Category II English-style two-storev house, with its steep pitched slate roof and gables, had opened as a restaurant just a year before. The night we're there, the dark wood and ornate upholstery absorb any early evening light filtering in through the leadlight windows. Clustered around a dark wooden table in an upstairs alcove, are five people apparently deeply intent on a paper napkin.

The five are Professor Paul Callaghan, Dr Maan Alkaisi, Dr Simon Brown, Dr Steve Durbin and Dr Roger Reeves (all themselves now Professors) and the understandings being worked out on the paper napkin become the basis of the MacDiarmid Institute.

But it might not have been so. At the time of this 2001 meeting at the historic Curator's House, there were two competing bids for the government's newly announced 'Centres of Research Excellence' (CoREs) funding, both in the materials science space. The stakes were high: the funding was new and significant and would provide the successful bidder with the security of funds to set up an entirely new institute. Sir Paul Callaghan was leading the Victoria University of Wellington (VUW) bid and the team from the University of Canterbury (UC) team the other. Only one bid (if any) would be funded.

One of the five sitting around the table that night, Simon Brown, says he remembers he and his UC colleagues were expecting a very tense meeting: "But Paul Callaghan cut straight to the chase and offered us a very good deal to merge with the VUW bid, and everything was okay from then on.

"That will stick in my mind forever as a pivotal moment."

Maan Alkaisi says he remembers the meeting well. "Paul proposed we join efforts to increase our chances of getting funded. It was about how to collaborate and not compete."

In a conversation recorded in 2012, just a month before he died, Sir Paul Callaghan (as he was by then) recalled the meeting: "I'd got on a plane, flown down to Christchurch and met up with all the Canterbury players apart from Richard (Blaikie) who was abroad. I remember being driven out there to this restaurant where they gathered after work. We got a table napkin out and we drew up the deal."

Simon Brown says he remembers clearly the earlier announcement of the new government funding. He says it was a significant new tranche of funding and that the Canterbury team sprang into action: "We were always going to put in a bid."

Summary

- Nanotechnology will enable revolutionary advances in fields as diverse as electronics and medicine.
- The high-tech industries that use nanotechnology advances are well-positioned to significantly contribute to modern economies
- In order to leverage opportunities in this rapidly expanding field it is critical to establish significant facilities and expertise early.
- The University of Canterbury is a leader within New Zealand in Nanotechnology- creation of a Centre of Research Excellence will provide a national focus and enable active participation at an international level.

ST

Nannetructure Engineering, Science and Technology Group sity of Centerbury, Christoburgh, New Zealand

A selection of the slides Steve Durban presented to the University of Canterbury's research committee in 2001.

THE NEW ZEALAND CENTRE FOR NANO-ENGINEERED MATERIALS AND DEVICES

Nanostructure Engineering, Science and Technology Group University of Canterbury, Christchurch, New Zealand

UNIVERSITY OF CANTERBURY TEAM:

MAAN ALKAISI Electrical & Electronic Engineering RICHARD BLAIKIE Electrical & Electronic Engineering SIMON BROWN Physics & Astronomy ALISON DOWNARD Chemistry STEVE DURBIN Electrical & Electronic Engineering **ROGER REEVES** Physics & Astronomy

Nanostructure Engineering, Science and Technology Group Intressity of Canterbury, Christchurch, New Zastand

ST

Simon says the UC crew had already set up a Nanostructure Engineering, Science and Technology (NEST) group at the UC and several researchers had shared a \$1m Marsden Grant in 1998: "In those days that was a lot of money." He says the Canterbury team had already set up what is now the University of Canterbury's 'Electrical Engineering Nanofabrication Lab' and had, as early as Feb 2001, run an 'Advanced

Professor Paul Callaghan terbury team had already set the University of Canterbury's heering Nanofabrication Lab' y as Feb 2001, run an 'Advanced for the name and he was 110% adamant that *"Shortly before he passed away Paul asked me if any of us had kept the napkin, but I guess none of us did - after all, we weren't sure we'd get funded, and I don't think any of us ever dreamed of the size or scope the Institute would eventually reach!"*

PROFESSOR STEVE DURBIN

Professor Maan

Alkaisi

Research Workshop on Semiconductor Nanostructures' in Queenstown. "We realised that getting a hundred top people, including a Nobel Laureate (Klaus von Klitzing) to come to a meeting on nanotechnology in NZ was quite a milestone– we take them for granted now, but I don't think such meetings had ever happened before."

The UC registration of interest was called 'New Zealand Centre for Nanoengineered Materials and Device Research'.

Electrical and Computer Engineering at Western

Steve Durbin (now Professor Professor of

receiving the call from Paul Callaghan.

Michigan University) recalls his surprise at

"I was a lecturer at the time, wondering how

I ended up in a position that Professor Paul

Callaghan was calling me! I had just gotten

Canterbury's research committee - Roger went

done pitching our bid to the University of

Professor Richard Blaikie

Professor Jeff Tallon

along, but they made me go in and present alone. I was told NOT to do PowerPoint, so I used - believe it or not - an overhead projector. "Two bids were going in at the same time, one from Canterbury and one from Vic. The Vic team had strong reputations and Canterbury had what we believed was a strong case for high risk/high payoff in a field that was just starting to catch large-scale, world-wide attention (nanotechnology). Paul (and others, I'm sure, including Joe Trodahl) was concerned we'd end up cancelling each other's bids out, and he

reached out to see if we could join forces. Simon said the VUW and Canterbury teams had known about each other's bids."

Steve says he remembers collecting Paul at Christchurch airport for the crucial meeting at the Curator's House. it be named after Alan (I didn't know Alan at the time). Paul was right. Alan was a true gentleman and a strong supporter of our efforts. Shortly before he passed away Paul asked me if any of us had kept the napkin, but I guess none of us did after all, we weren't sure we'd get funded, and I don't think any of us ever dreamed of the size or scope the Institute would eventually reach!"

"It was just as Simon said. Paul was open,

friendly, and sincere - and was very keen to

ensure Canterbury's ideas didn't disappear in

a joint bid. He was suggesting that VUW lead

the CoRE and I suggested that Canterbury put

In the 2012 recording, Sir Paul Callaghan, who had in early 2001 moved from Massey to VUW to take up the position as Alan MacDiarmid Professor of Physical Sciences, speaks of being asked to lead the VUW bid: "I guess it would have been about August, September 2001, that somehow or other, I got asked to lead a bid from Victoria University. Jim Johnston was Head of School at the time said, "Paul why don't you do it." Jim was no doubt busy enough and it seemed like a tall order that we would get the money, a long shot just like Marsden grants and all these other things. But I didn't have any major administrative responsibilities. I wasn't a Head of School, I was a professor teaching at University, I had time on my hands, and I thought why not that would be fun.

"And so we put together an EOI and we called it 'The MacDiarmid Institute for Advanced Materials'."

Having seen the round of bids that had come through to the Tertiary Education Commission in the first EOI application process, Paul says his VUW colleague Joe Trodahl said to him: "Paul, why don't we get together with the Canterbury lot and form a joint bid?". Paul says it just seemed such an obvious thing to do. "I'm very grateful for Joe's suggestion. Many of the people involved were erstwhile collaborators of ours, people like Steve Durbin, like Roger Reeves, Simon Brown and others. And the bid from Christchurch was led by a man called Richard Blaikie."

Richard Blaikie is rather humble on this point: "It's a fairer reflection to say the NEST group was a true collective, not so much that the bid was led by me." He smiles: "Because I was overseas at the time of the meeting, I was nominated to lead the Canterbury bid in my absence."

He says there had been a building of capacity at Canterbury across physics, chemistry and electrical engineering for some time: "We had a group of young and up and coming people, and had run the Queenstown founding event, which I like to call AMNO, organised by Simon and Joe (Trodahl), so there were already good connections between us and the VUW material scientists."

Simon Brown says he always had the sense that the Canterbury researchers were the new arrivals compared with the Wellington crowd who were well established names such as Paul Callaghan and Jeff Tallon. "So it was a natural thing to bring together the heavy hitters and the young upstarts."

Richard Blaikie says that although the Canterbury researchers were younger and more junior than the VUW team, they had an advantage:

"We were the real exciting nanotechnologists in the country. They needed our vibrancy and the nano side of things. But if Canterbury had stuck to a separate bid, we'd have been going up against the leadership of Sir Paul; it would likely have been mutually assured destruction."

Like any birth, it wasn't entirely straightforward. Richard said the UC leadership took quite some convincing that Canterbury should give up its EOI and join forces as junior institute partner to the VUW-led bid:

"As Paul said, bragging rights are ultimately what universities care most about and these were not easily given up by the Canterbury leadership who were really wanting a Canterbury-led bid. Paul Callaghan was very persuasive, but ultimately the decision was an internal Canterbury one."

Richard says once the decision had been made to join forces, there were multiple hurdles: further months of showing the government that this combined bid was a genuine collaboration. "We had to show a united front to the panel led by (former Governor General) Sir Paul Reeves. It was clear our combined bid would be a partnership with full collaboration. There was always a double-act kind of approach in the presentations. I had the privilege to lead many of the presentations for example to Michael Cullen and others."

Richard says that as a result, a lot of his time on sabbatical leave (at Massachusetts Institute of Technology) was spent on phone calls: "I was taken to meetings 'in a box' – one of those early black polycom speaker phones - and I'd dial in."

Fellow founding Investigator (and now Emeritus Professor) Alison Downard, who was brought into the Canterbury meetings at that time, recalls Richard dialling into meetings on the polycom speaker phone. "Richard was definitely a major driver of the bid development." University of Otago researcher Keith Gordon, who was involved in the VUW bid, says it was interesting to see how Sir Paul couched it: "The mentality of how to work collaboratively with people didn't exist much in NZ, because you needed to move from A to B to do that. Interacting within NZ wasn't valued. This had created a certain culture that Paul pretty much didn't agree with. He managed to convince the government that these people really did want to work together, which they did. And when promoting the Institute in later years, he would be adamant that the success of someone in Auckland or Canterbury was success of the Institute."

Simon Brown adds, "It was a real credit to Paul that he went out of his way to make sure that Canterbury, as a co-host of the Institute, shared the limelight as much as possible. For example, it was very common in those days for politicians to be pointed towards the Canterbury nanofabrication facilities."

Jeff Tallon who wrote the first half of the combined bid recalls that David Bibby, who was Pro Vice-Chancellor of Science, Engineering, and Architecture and Design at VUW at the time, had been working to bring together the chemists and the physicists:

"David had been speaking with me about my coming to VUW, which I eventually did, and the two of us then convinced Paul Callaghan to come to VUW about six months later. All these movements were directly around the planned establishment of a new materials science institute at VUW that bridged chemistry and physics. Jim Johnston (who was head of chemistry at the time) and I had been drafting a document of establishment for this – the 'Rutherford' Institute was a working title."

But then, he says, the government announced the invitation to establish CoREs and invited bids:

"It was obvious this was a better thing and better funded, so we switched to drafting the CoRE bid. When we were about halfway through, Paul

Professor Simon Brown

Professor Steve Durbin

Professor Roger Reeves

Professor Alison Downard

MEMORANDUM OF UNDERSTANDING

The purpose of this document is to detail the provisions through which the separate Centre of Research Excellence (CoRE) bids of the University of Victoria at Wellington (The MacDiarmid Institute for Materials Science, Proposal 02-VUW-502) and the University of Canterbury (The New Zealand Centre for Nanoengineered Materials and Device Research, Proposal 02-UOC-503) shall become a single, unified proposal.

1. Name.

The new centre shall be named The MacDiarmid Centre for Advanced Materials and Nanotechnology Research.

2. Management.

The Director of the Centre will be Professor Paul Callaghan of the University of Victoria at Wellington. The Deputy Director of the Centre will be Dr. Richard Blaikie of the University of Canterbury.

3. Structure.

- The topical groups within the Centre will be (in alphabetical order):
- a. Ceramics and material coatings
- b. Chemical, electronic and optical properties of materials and surfaces
- c. Nano-engineered materials and device structures
- d. Sensor technologies
- e. Soft materials

Each topical group will have a co-ordinator appointed on a rotating basis who will report directly to the Deputy Director. One responsibility of each topical group will be to seek to increase interactions among New Zealand researchers and local industries with related interests. Each principal investigator will identify with a primary topical group, although association with multiple secondary groups will be encouraged. The Deputy Director will select each group co-ordinator in consultation with the Centre Director.

Callaghan came onto the scene. To me it was very clear that if Paul was around, the bid would be better led by him with his political name and whole approach with the public - it was just what we needed."

Jeff says Paul Callaghan then took over writing the bid: "He came back to me and asked me to draft the final closing statement, which was incidentally used by the Minister of Science on a number of occasions to articulate the vision for CoREs:"

Ngā tapuwae

We close with a few general observations. *Scientific advancement is not fundamentally* predicated on the breakthroughs of a few elite individuals but is a collective movement of peer understanding. We build on ngā tapuwae o ngā tupuna - the footsteps of our intellectual predecessors. We build for ngā tapuwae o ngā *mokopuna – the footsteps of our intellectual* descendants. Though we honour the famous, find inspiration in their tenacity or insight and perhaps model our own ideals on theirs, no individual is indispensable to the progress of science. The absence of a Newton may have tethered the march of science for a mere ten years or so and made little difference to its current state. No individual captures knowledge as his exclusive domain nor should the resources used in the pursuit of knowledge be subject to exclusive capture. Scientific endeavour and technological application are social activities that work best when organised so that the total is much more than the sum of the parts. The challenge of organised science is to harness the champions, use them as mentors and guiding lights but within a team context where individuals may come and go but the peer unit advances from strength to strength. These principles are fervently espoused by the MacDiarmid Institute. We acknowledge ngā tapuwae o ngā tupuna and commit to establish on a sure footing ngā tapuwae o ngā mokopuna o Aotearoa.

"Richard. Jeff and all the others made an excellent team. And we were just so fortunate to have Paul Callaghan as our figurehead."

Keith Gordon says Paul led the change in the culture: "Someone had to pull it all together and convince the more senior university staff to take the chance and convince government to shell out a ton of money."

Joe Trodahl agrees: "The bid was successful in no small part to Paul's personality. He connected very well with everyone. He could speak just as easily to politicians as to the whole country. That's what made the big difference."

So an Institute was born, on 1 July 2002, beginning as it meant to go on as a true partnership, initially between researchers at VUW, Canterbury, Industrial Research Limited (now Callaghan Innovation), Otago, Massey and GNS, and later extending to include Auckland and Callaghan Innovation. The genetic pedigree was clear, building on 'Ngā tapuwae o ngā tupuna'- the footsteps of our ancestors - or in this case, intellectual predecessors - much like any new life. And like any new creature, the total was immediately more than the sum of its parts.

"Richard, Jeff and all the others made an excellent team. And we were just so fortunate to have Paul Callaghan as our figurehead." PROFESSOR SIMON BROWN

No one has been able to describe exactly where they were when they heard news of the success of the bid, beyond saying that it was likely that bottles of champagne were bought. Simon reckons they were pretty confident: "By the time the bid went in, there was a sense we'd nailed it. We knew what the panel was looking for. We benefited enormously from Paul's understanding of politics and sense of what was needed to make this an outstanding bid. It was very clear the director had to have mana, as Paul did, as well as Jeff (Tallon) and others involved.

Professor Joe Trodahl

Professor Keith Gordon

First Director's piece - 2003

This newsletter is the first of a regular series of bulletins in which we will communicate the work of the MacDiarmid Institute to our friends and stakeholders. In this issue we report on just a few of our activities and as you read this you will gain a flavour of what we stand for. Yes, of course, we are about advanced materials and nanotechnology. But we are, in my view, about something much larger than that. Of all the CoREs, we are unusually committed to being a "distributed centre", an oxymoron if you will, but an idea whose time has come. We stand for a sense of partnership in which the corporate ego of any one university will be secondary. Victoria. Canterbury, Otago or Massey universities can all feel proud of us.

But we are equally determined that we will draw on the strengths of our Crown Research Institute partners, Industrial Research Limited (IRL) and the Institute of Geological and Nuclear Sciences Limited (GNS). In turn, we want to impact on the way they see their future. In the end we need to build something new, crossing the boundaries of universities and CRIs to build a critical mass out of New Zealand's fragmented and distributed talent. We are determined in that goal.

The first six months at the MacDiarmid Institute have been spent in hectic implementation, focused on ordering and installing the new research equipment that was made possible by the capital injection to the CoRE. With the operating funding, which has now started to flow, we have been able to establish new positions, prepare advertisements and select appointees. We have advertised for new Principal Investigators and Associate Investigators to join us, using the open and competitive process that we set out in our original plan. Two new PIs will join this year, funded at a rate of \$40,000 per annum. We have also run regular video link- up seminars during these first six months, connecting researchers across the country and as far away as the United States. The Board met in Wellington in August, in an excellent atmosphere of cooperation, and will meet again in Christchurch in March 2003. The expertise which that Board brings to the Institute from the wider research and business community will be of enormous value to us. In February 2003, the International Advisory Board will be invited to comment on our productivity so far.

At the same time many of us have been involved in preparing for AMN-1, the major international conference in Wellington that, this February, will launch the Institute in a very public way. The presence of three Nobel laureates, most of our International Advisory Board, and a large number

From the Director of the MacDiarmid Institute

of other distinguished international speakers will give a prominence to New Zealand materials and nanotechnology research that has rarely been seen in the past. AMN-1 will be opened by the Governor- General Dame Silvia Cartwright and will feature a reception at the Grand Hall of Parliament officiated by the Prime Minister, the Rt Hon. Helen Clark.

In a sense we are still catching our breath. As we look at our new equipment, and as we see new faces arriving and joining our effort, we can only feel a sense of optimism for the future. This is a rather unusual feeling in New Zealand research, but it is welcome and gives us renewed energy. At the same time the optimism is tempered by some harsh realities. First, the New Zealand university system within which our Institute operates is chronically under-funded, especially so in science and engineering. As a consequence we are trying to build world-class science and technology on an infrastructure so diminished that it is barely credible. It functions only because MacDiarmid of the nearly superhuman efforts of some remarkably talented and committed people. Second, there is an almost complete disconnection between the agencies of government that deal with education and the agencies that deal with research, science and technology. Whatever the goals of our nation's RS&T strategy, they will fail if they are not comprehended and incorporated by those who frame policies for tertiary and secondary education. The obstacles the Ministry of Education put in the way of our partnerships with the CRIs have caused us great difficulty, but they have not stopped us in our intent and we have overcome these, by the most creative means. Finally, we are all aware that we while can train the best re-searchers in the world, they may take their skills away from New Zealand.

While we may produce the best inventions, that intellectual property may yet end up being exploited by the rest of the world. How do we avoid that? We change the social and economic culture of New Zealand. It's a task a bit big for the MacDiarmid Institute, but we will play our part. We are all in a race against time, a race that can only be won through partnership and understanding.

- Paul Callaghan, 2003

Changing the social and economic culture of New Zealand (is) a task a bit big for the Institute. but we will play our part. We are all in a race against time, a race that can only be won through partnership and

understanding.

(We're) crossing the boundaries of universities and CRIs to build a critical mass out of New Zealand's fragmented and distributed talent

Issue No 1 February 2003

Three Nobel Laureates visit New Zealand

A lan MacDiarmid, Hideki Shirakawa and Alan Heeger will all visit Wellington in February 2003, as part of the MacDiarmid Institute's Advanced Materials and

Nanotechnology conference (AMN-1), to be held at Te Papa and at Victoria University of Wellington. This conference, which has attracted over 250 registrations from around the world, will showcase New Zealand research and bring the world's leading materials scientists to New Zealand. Professors MacDiarmid, Shirakawa and Heeger won the 2000 Nobel Prize in Chemistry for their discovery of conducting polymers, a development which promises to deliver a new generation of

Nanotechnology: the Sum of Success by Alan Samson

Imagine the advantage for the Kiwis if an America's Cup yacht could be built that was lighter yet stronger than competitors' models thanks to revolutionary materials designed from scratch in a laboratory. The new materials might allow for a flexible mast that would be untroubled by sudden Hauraki wind shifts, for instance, or for a thin hull coating that markedly reduced the friction with the water. For applied mathematician Shaun Hendy, who works for both Victoria University of Wellington and Industrial Research Limited at Lower Hutt,

The New Zealand university system within which our Institute operates is chronically under-funded, especially so in science and engineering. As a consequence we are trying to build world-class science and technology on an infrastructure so diminished that it is barely credible.

Contact us

Editor: Lynley Hargreave

The MacDiarmid Institute

ISSN 1176-1423

Published biennally

E-mail: lynley.hargreaves@rsnz.org

PO Box 600, Wellington New Zealand

E-mail: macdiarmid-institute@vuw.ac.nz

Website: www.macdiarmid.ac.nz

Phone: 64-4-463 5950 Fax: 64-4-463 5237

<u>16</u>

MacDiarmid Interface

Alan MacDiarmid, Hideki Shirakawa and Alan Heege

electronic and optical devices. While in Wellington they will present scientific addresses at the conference, speak at a public meeting to be held at Te Papa on the evening of Tuesday 11 February, and unveil a plaque commemorating the Kelburn Parade site of the home of Maurice Wilkins, another New Zealand Nobel prize winner.

such a breakthrough is not only inevitable, but relatively imminent. What does a mathematician know about such things? Dr Hendy's confident prediction is soundly based on some pretty groundbreaking research going on in New Zealand into the underlying processes of inorganic materials what they comprise and how they function.

The research is being done by scientists at the MacDiarmid Institute for Advanced Materials and Nanotechnology, one of New Zealand's new "centres of excellence" that spans Victoria and Canterbury Universities,

Continued on page 3

The changing face of the MacDiarmid Institute

Using colour, this graph indicates the years when Principal Investigators joined the Institute, showing that most of our current cohort of Principal Investigators joined since 2009 and that more than 40% of our current Principal Investigators joined in the last five years (since 2018).

■ No. of PIs since 2010 ■ No. of PIs since 2013 ■ No. of PIs since 2015 ■ No. of PIs since 2016 ■ No. of PIs since 2018 ■ No. of PIs since 2021

AMN conferences through the ages

When we celebrate an institute, we're celebrating not only an organisation, but all that happens as a result of its existence. In the case of the MacDiarmid Institute, there are many impacts we can point to - the culture-shifts, the camps and scholarships for Māori and Pacific Island secondary and undergraduate students, our alumni pathways, affiliated spin-out companies and, more recently, the development of Mātauranga Māori within the Institute.

One of the most impactful outcomes of the Institute over the past 20 years has been our series of international conferences on advanced materials and nanotechnology

(AMN), each of which attracts several hundred delegates from New Zealand and around the world and is the largest in its field in the Southern Hemisphere in the year it is run. The conferences have become a key feature of the materials science landscape in Aotearoa New Zealand.

These biennial in-person conferences have been attended by nine Nobel Prize laureates including Alan MacDiarmid, Alan Heeger, Hideki Shirakawa, Klaus von Klitzing, Stephen Chu, Sir Harry Kroto, Sir Anthony Leggett and Roald Hoffmann. The AMN conferences have offered highimpact presentations at the forefront of their fields.

	Date	Location	No. of Attendees	NZ delegates	International delegates	No. of Countries
AMN1	Feb-03	Wellington	231	184	47	17
AMN2	Feb-05	Queenstown	413	182	231	30
AMN3	Feb-07	Wellington	450	*	*	*
AMN4	Feb-09	Otago	331	182	149	18 +
AMN5	Feb-11	Wellington	392	210	182	30
AMN6	Feb-13	Auckland	454	250	204	27
AMN7	Feb-15	Nelson	524	227	297	34
AMN8	Feb-17	Queenstown	521	162	359	32
AMN9	Feb-19	Wellington	362	234	128	28

* No information available

AMN1 (Left to right) Nobel laureates Professors Alan Heeger, Hideki Shirakawa and Alan MacDiarmid

(Left to right) Professor Alan Kaiser with Nobel laureate Professor Klaus von Klitzing

AMN3 (Left to right) Nobel laureates Professors Stephen Chu and Sir Harry Kroto

MacDiarmid Institute International Science Advisory Board member and Karlsruhe Institute of Technology Professor Annie Powell has been to every AMN conferen since her first AMN (AMN5) in Wellington in 2011. She sa that as a molecular scientist, the inclusivity of the AMN conferences has been important and supportive.

"It's awesome that I can be a molecular scientist and still contribute to the materials world. Molecules hold the key to so many things. Some of the most important "large" molecules support our life processes (for exampl haemoglobin). And when we say "large", we're actually talking about molecules which are small on a materials stage - mostly nanoscale or even smaller. I've enjoyed th about the conferences, and I've noticed the AMNs have become more inclusive over time."

She also says the AMNs are particularly friendly. "Everyone is so welcoming and really appreciative that you've made the effort to travel."

Ashcroft and Sir Richard H. Friend

Fellow MacDiarmid Institute International Science
Advisory Board member and University of Queensland
Professor Matt Trau, who has attended three AMN
conferences over the years, says that the conferences are
consistently of high value.
"The interdisciplinary nature of the Institute and
the AMNs means that scientists from a wide range of
backgrounds can join in and meet potential collaborators
from related and disparate fields alike".
"The AMN conferences reflect the Institute as a whole. The
MacDiarmid Institute is a national treasure. The cross
disciplinary, cross-country research programs are of global
scale, innovation, and importance. There are so many
examples of how high-quality MacDiarmid innovation
is building and buttressing the high-tech industrial
base in New Zealand. The Mātauranga Māori research
programme is also immensely impressive."

AMN7 Professors Michael Grätzel from EPFL (left) and Hideo Hosono from Tokyo Institute of Technology opening AMN7

AMN9 Professor Dan Nocera (left) speaking at AMN9 and (right) with NZ's then Minister for Research, Science and Technology, Hon Dr Megan Woods

We asked our Investigators and students where they saw the Institute in 20 years' time. Here's what they told us.

Enhance. Grow together

In 20 years the MacDiarmid Institute will be a key player in mining the valuable e-waste of previous generations. So Reconfigurable Systems to the max!

Continue to focus on sustainable New Zealand, also translate the knowledge/extend it to answer pressing problems facing the world at large

materials for a greener planet and skilled workforce Inspiring and uplifting people in Aotearoa and around the globe through passion, care and diligent determination to create a better world

A GUIDING MATERIALS SCIENCE ORGANISATION IN THE ASIA-PACIFIC REGION

Greater inclusion of people with different backgrounds has led to new innovation and out of the box thinking The MacDiarmid Institute will be internationally recognised for the impact and benefits it has provided Actearoa and the world through our research and commercialisation activities. We will find ways to not only stop the damage to our planet but also help it to regenerate its resources again.

an internationally recognised Hub and thinktank for Preptech and Cleantech Having contributed to solving the world's biggest issues, through advice, several successful startups and innovative findings, MacDiarmid Investigators and students prepare to fight the next round of global problems

The MacDiarmid Institute's name will be synonymous with green tech innovations around the country, not just within science circles.

There are many women and Maori in science. In 20 years, equity is not a problem anymore!!! The MacDiarmid Institute will have helped to cut off the global warming and will have found a way to separate and store CO2 and how to reuse it.

a lot more greeneconomy spinoffs = hZ making hig impact globally I really hope that in 20 years we will be able to keep looking after our planet and that we are completely carbon zero and that we will have found a cure for kauri dieback.

more maori and Pasifika representation

Twenty years from now, New innovative Greentech Working together With Mātauranga Māori Lots of events and workshops Nobel prize winners

> Future of industry focussed innovative tech implanted into global communities

Te Moana Nui a Kiwa

At the MacDiarmid Institute we are committed to building the capacity and capability of Māori and Pacific people and research through our Mātauranga Māori research programme. Through this, we are building the number of Māori and Pacific researchers within the Institute and growing the next generation of Māori and Pacific Island researchers in the wider RST&I sector. Here we celebrate the establishment of our new Deputy Director Māori position and some of the highlights and achievements of some of our Discovery Scholars.

20 years through a Mātauranga Māori lens

Of all the lenses we could apply to the MacDiarmid Institute's 20 years, one of the most important to examine is our work in the Mātauranga Māori space. Institute Deputy Director Māori, Associate Professor Pauline Harris, from Rongomaiwahine, Ngāti Rakaipaaka and Ngāti Kahungunu ki Wairoa, says she knew Paul Callaghan and has watched the Institute's journey in Mātauranga Māori over the years:

"I met Paul Callaghan when he went to the Antarctic with Ocean Mercier and Dan Pringle, and then many other times over the years. I used to ask Paul for advice around Mātauranga Māori. He was always really open to talk to me and gave me feedback on my ideas and questions. Over the years also the Institute has always been really supportive of my science outreach to Māori communities, sharing equipment and gifting outreach packs for the kids, which they very much enjoyed."

Pauline says while there were early movements towards building relationships with Māori, particularly through (former Director) Professor Kate McGrath's connections with Taranaki iwi, the earliest MacDiarmid Institute workshops exploring Mātauranga Māori concepts were student-led initiatives, such as the 2015 symposium organised by Bart Ludbrook on 'Mātauranga Māori, Nanotechnology and Advanced Materials'.

She says the Institute has come leaps and bounds in this regard over the last four years in terms of developing relationships and engaging with Mātauranga Māori and Māori on a variety of projects: "The Institute has grown in its ability to nurture and grow these relationships and connect with Māori business in the economic space. And there is now a genuine desire to work with iwi Māori on environmental issues, to develop capacity and capability, and to develop young Māori as well. And, importantly, this commitment to capability and capacity development has been done with Māori leading it." Pauline says she's seen the growth, from the original korero in the original 2002 bid to the forming of the Discovery Awards in 2008 (later known as DiscoveryCamp), the Discovery Scholarships (which were set up in 2020), her Science Executive position, and the establishment (this year) of the position of Deputy Director Māori:

"People talk about having Māori PhD students working in this space, but actually we first need to grow the pipeline of Māori and Pacific Island students in the undergraduate physical sciences and Mātauranga Māori and Pūtaiao Māori. We already now have 43 Discovery Scholarship alumni. It's really exciting because people do a lot of talking about needing Māori physics students and wanting to grow the pipeline, but the MacDiarmid Institute is actually doing it. The Institute has made a commitment not just to education, but to Māori education, and to bringing on board Māori and Pacific Island researchers and has now committed to a Mātauranga Māori Research programme, and most recently to a Deputy Director Māori position, which shows inclusivity of Māori in leadership roles within the Institute.

"I've watched the growth of the MacDiarmid Institute over the past 20 years, and seen it blossom in the last four to five years, really embedding Mātauranga Māori and Pūtaiao Māori. It's given us a platform to help grow the pipeline.

"It feels like a really safe place for us to be able to do the work we need to do. I do feel really respected. The Institute is a good home to grow our research and our people."

"It feels like a really safe place for us to be able to do the work we need to do. I do feel really respected. The Institute is a good home to grow our research and our people."

Since 2018 we've partnered with the Whakarewarewa Village Charitable Trust to support the Village to use materials science to better understand the natural colours of geothermal rocks and waters at the Village and surrounding areas within the Taupō volcanic zone, and to incorporate and explore synergies between the two knowledge systems of Mātauranga Māori and Western science.

MARINA

Discovery Scholarships

We have since 2020 offered our Discovery Scholarship programme for Māori and Pacific Island students Discovery Scholar Jesse Wood had his first conference in science. This is an extension of our long running paper accepted. Wood, J., Nguyen, B. H., Xue, B., DiscoveryCamp programme, and supports students Zhang, M., & Killeen, D. (2022, December). Automated studying in the physical sciences, chemical/materials Fish Classification Using Unprocessed Fatty Acid engineering, Māori sciences or sciences related to Chromatographic Data. sustainable innovation. For new scholarship recipients, the award covers university fees up to \$8,000 for the 2023 Jesse flew to Perth to present his paper at the Australia academic year and a one-off cash award of up to \$3,000, Joint Conference on Artificial Intelligence 2022 in and previous recipients are able to apply for Te Huarahi December. ki Mua Award category, which awards recipients a one-off cash award of up to \$3,000.

Number of scholarships awarded

2020 - 152021 - 232022 - 22

"The honour of being a Discovery Scholarship recipient enabled me to start my Masters paper early. I'm a step closer to achieving my goals. Fa'afetai, Fa'afetai tele lavā." JESSICCA USU

"Being the first in my whānau to attend university has given me an immense sense of pride." ZACK AVERY

"This scholarship will benefit me immensely, as it supports the momentum of my dreams for te taiao (the natural world), the moana and my people." PIANINA KAHUI- MCCONNELL

"Receiving this opportunity has put me closer to my dream of contributing to instrumental changes in science in Aotearoa." LUCAS LARRAMAN

Postdoc Dr Jackson Miller and Whakarewarewa Living Village Environmental Manager James Warbrick

Discovery Scholar highlight

Rhodes Trust trip to Oxford

Our Deputy Director Māori Associate Professor Pauline Harris travelled to Oxford in October with Juliet Nelson. Juliet is one of our Discovery Scholarship alumni and a former Honours student of Principal Investigator Professor Nicola Gaston. They were joined by MacDiarmid Institute Board Chair Hēmi Rolleston and Principal Investigator Professor Duncan McGillivray along with a wider group of 40 students and mentors from iwi across Aotearoa. The group was hosted by the Rhodes (Atlantic) Trust.

The aim of the trip was to encourage more Māori to apply to the Rhodes scholarship and the like.

Māori are significantly under-represented (only three of the more than 247 New Zealand Rhodes scholars selected since 1904 were Māori). This visit follows the legacy from one of the first Māori to attend Oxford, Makereti Papakura from Whakarewarewa Village, nearly 100 years ago. The trip included an Inaugural Makereti Papakura talk delivered by Professor Linda Tuhiwai Smith. The group visited different departments and colleges to gain a better understanding of the opportunities at Oxford. Juliet and Pauline visited the Physics department and met with the head of department of Physics Professor Ian Shipsey, who gave a tour of the department and arranged for his students to talk about their experiences at Oxford. This was then followed by meet and greet with others including collaborators of Principal Investigator Professor Justin Hodgkiss. Juliet and Pauline were given a tour and met with Professor Henry Snaith's group. They shared their research, what they were doing and what it was like at Oxford.

Current Rhodes Scholar Rhieve Grey (Ngāti Tūwharetoa ki Taupō, Ngāti Manunui, Ngāti Porou), who helped the group organise the visit, describes his journey of getting to Oxford and the strong Māori women who influenced and supported him:

https://thespinoff.co.nz/atea/25-04-2022/theindigenous-women-who-got-me-to-oxford

Here is the latest news from the actual trip from local Māori media Waatea News: https://waateanews.com/2022/10/13/plan-formaori-rhodes-scholars/ https://www.auckland.ac.nz/en/ news/2020/11/26/rhodes-scholar-puts-themahi-in-to-combat-social-inequality.html Deputy Director Associate Professor Pauline Harris and Discovery Scholar Juliet Nelson, at the dinner hosted by the Atlantic (Rhodes) Trust in Oxford, England

Out of the lab

Many technologies that we've come to depend upon in our daily lives are currently unsustainable in one way or another, whether through their embodied carbon or the depletion and environmental cost of the materials they're made from. MacDiarmid Institute researchers spanning diverse scientific backgrounds are pursuing ways to produce lowemissions materials, in order to add hi-tech functionality to abundant materials and waste, and even create biodegradable technologies.

Here, we introduce you to some of our people and their work.

"A particular highlight for me is seeing the substantial growth in the extent and depth of our partnership with iwi.² PROFESSOR SALLY BROOKER

Our research programmes over the years

Professor Richard Blaikie (Deputy Director upon the Institute's establishment in 2002 and the Institute's Director from 2008-2011) says the evolution of the Institute's research programmes over time clearly showed both the adoption of new research areas and that many the Institute's core research elements had endured.

"Clearly there are elements of using materials' propertie at the nanoscale that are enduring, via chemical physica or engineering approaches, but with an evolution to mov the focus of applications more towards global challenge of climate change and sustainability."

He says it was very positive to see more prominence for Mātauranga Māori and recalls that there had been initiatives in the Mātauranga Māori space right from the start.

"There had been support for te reo Māori physics resources in collaboration with the NZIP from right at th time of our founding in 2002."

Looking at the research programmes over time, foundin Principal Investigator Professor Jeff Tallon notes that the Institute's superconductivity work had shifted substantially from fundamental research to applied and development research.

"There's a sharp focus on mission-led research rather th blue skies research back at the beginning."

Professor Simon Brown, who has been a Principal Investigator with the Institute since 2002, says he had noticed a shift towards chemistry and biology since the first days of the Institute.

"There were of course researchers at the outset who focused in this area, and the link to Alan MacDiarmid himself of course was strong, so polymers were already a big feature. There was also more of emphasis on nanofabrication in the early days."

Principal Investigator Professor Sally Brooker, who joined the Institute in 2008, says that a particular highlight for her was seeing the substantial growth in the extent and depth of our partnership with iwi.

"You can see this illustrated in the word clouds by the increasing prominence of the words 'Mātauranga Māori' and 'Taonga' in our rebid in 2019. Our commitment to continuing to accelerate this growth is clearly

"There has been an evolution to move the focus of applications more towards global challenges of climate change and sustainability."

ed	demonstrated by the recent appointment of Associate Professor Pauline Harris as the Institute's inaugural Deputy Director Māori, and of Diane Bradshaw as Stakeholder Relations Partner Iwi."
es	She says the word clouds also showed a significant shift over the years towards directly addressing the many aspects of climate change.
ve s	"Climate change is a huge current challenge that our MacDiarmid Institute team is well placed to contribute to addressing. The Institute's directors over the years, in particular our founding Director Sir Paul Callaghan and our current Co-Directors Professors Nicola Gaston and Justin Hodgkiss, are to be congratulated on leading these substantial and strategic shifts in focus as the Institute and its research has evolved.
ne	"It is essential that we as an Institute continue to develop and evolve to remain current and relevant."
ıg	Sally says the word clouds also reveal that a consistent theme over the years has been 'polymers', and in particular 'conducting polymers'.
l	"This is highly appropriate given that it was conducting polymers that led to Professor Alan McDiarmid's Nobel Prize in Chemistry."
	"There's a sharp focus on mission- led research rather than blue skies

research back at the beginning." PROFESSOR JEFF TALLON

Awards 2022

Ebu Avci - Massey University 2022 College Research Award - Early Career (Massey University)

David Barker - University of Auckland Research Excellence Medal (University of Auckland Research Awards)

Jack Chen - Auckland University of Technology Science of Synthesis Early Career Advisory Board (Thieme Chemistry, Stuttgart, Germany)

Vladimir Golovko – University of Canterbury AINSE Service Recognition Award (Australian Institute of Nuclear Science and Engineering)

Justin Hodgkiss - Victoria University of Wellington Researcher Entrepreneur Award (KiwiNet Research Commercialisation Awards)

Eric Le Ru - Victoria University of Wellington MaramaLabs named in top 200 exporters in TIN report

Aaron Marshall – University of Canterbury Established Researcher Award (University of Canterbury Faculty of Engineering)

Kim McKelvey - Victoria University of Wellington Early Career Researcher Excellence Award (Victoria University of Wellington)

Franck Natali - Victoria University of Wellington Asian Entrepreneurship Award 2022 – 3rd prize (Liquium) Research Excellence Award (Victoria University of Wellington Staff Awards)

Volker Nock – University of Canterbury Runner-up Research Prize (Food, Fibre and Agritech Challenge)

Jadranka Travas-Seidic - University of Auckland Research Excellence Medal (University of Auckland Research Awards)

Geoff Waterhouse - University of Auckland Shorland Medal (New Zealand Association of Scientists) Highly Cited Researcher (Clarivate Analytics)

2022 Funding Successes

2022 Marsden Grants – Fast Start

Geoff Waterhouse* - University of Auckland "Structural and magnetic Properties of Co implanted diamond-like carbon films deposited by ion beam methods"

2022 Marsden Grants

Baptiste Auguié, Eric Le Ru* and Volker Nock* - Victoria University of Wellington and University of Canterbury "UV-vis spectroscopy of ultra-small scattering samples and individual micro-particles"

Philip Brydon – University of Otago "Superconductors that survive ultra-high magnetic fields: Revealing the role of symmetry"

Renwick Dobson - University of Canterbury "TRAPped in an elevator"

Prasanth Gupta and Geoff Waterhouse* - GNS and University of Auckland "Harnessing the power of thermal spikes - A new pathway to fabricate size-controlled transition metal carbide nanoparticles for energy conversion and storage"

Patricia Hunt and Cameron Weber* - Victoria University of Wellington and University of Auckland "Unravelling the electronic structure of highly charged hydrogen- and halogen- bonds; rational chemical design and the creation of novel ionic liquid materials"

Geoff Jameson - Massey University "Structural basis of viral wars: Innate immune system attack on viral genomes and the counterattack by viruses"

John Kennedy - GNS "Can wonder crystal Perovskites transform solar power generation? - Discovering the links between strain and material properties"

Erin Leitao* and Tilo Söhnel* - University of Auckland "A Green Awakening for Radical Chemistry"

Jami Shepherd* - University of Auckland "Hearing and sound communication in crustaceans" *Contributing as an AI

Royal Society Fellowships

Mathew Anker - Victoria University of Wellington Rutherford Discovery Fellowship - "Lanthanide(II) Hydrides for Nitrogen Fixation and Ammonia Production"

2022 MBIE Smart Ideas Funding

Martin Allen - University of Canterbury "High-efficiency Gallium Oxide Power Electronics for New Zealand's Zero Net Emissions Future"

Ebu Avci - Massey University "Smart Robotic Capsule to Advance Management of Gastrointestinal Diseases"

Jack Chen and Catherine Whitby* - Auckland University of Technology and Massey University "Tunable and stimuli-responsive cellulose-based surfactants - from emulsifiers to defoamers"

Vladimir Golovko* - University of Canterbury "*Pūhiko Nukutū: a green hydrogen geostorage battery in Taranaki"

Simon Granville, Kai Chen* and Keith Gordon* - Victoria University of Wellington and University of Otago "Efficient spintronic terahertz emitter for beyond-the-lab applications of terahertz spectroscopy"

Jim Johnston - Victoria University of Wellington "Greater Electricity Generation and Industrial Heat Opportunities from Existing and Greenfields Geothermal Resources"

Volker Nock and Renwick Dobson* - University of Canterbury "A simple capillaric platform for real-time diagnostic devices: Inhouse wine testing as proof-of-principle"

Geoff Waterhouse - University of Auckland "High-energy density rechargeable seawater batteries for marine renewable energy storage"

Mark Waterland - Massey University "The bite of the bumblebee: Biomimicry in flower synchronization" *Contributing as a Key Researcher

2022 Other MBIE Funding

Sally Brooker, Nigel Lucas and Chris Bumby - University of Otago and Victoria University of Wellington "Safe, low-cost, hydrogen storage materials from New Zealand resources" Catalyst: Strategic - New Zealand-Germany Green Hydrogen Research Programme

Justin Hodgkiss - Victoria University of Wellington "Towards a Next-Generation Material Data Platform - A New Zealand-Japan Collaboration" Catalyst: Seeding - New Zealand-Japan Joint Research Project

Aaron Marshall, Kim McKelvey and Geoff Waterhouse - University of Canterbury, Victoria University of Wellington and University of Auckland "Development of highly active anodes for anion exchange membrane electrolysers to enable low-cost green hydrogen" Catalyst: Strategic – New Zealand-Germany Green Hydrogen Research Programme

Ben Yin - Victoria University of Wellington "Catalytic Membrane Reactor for CO2 Hydrogenation to Methanol" Catalyst: Seeding General

2022 NSC (National Science Challenge) Grants

Jadranka Travas-Sejdic - University of Auckland "Microfluidic cytometer biosensor platform for novel detection of Phytophthora agathidicida" New Zealand's Biological Heritage

2022 Domestic Funding - Other

Ebu Avci - Massey University Summer project internship - Palmerston North Medical Research Fund

David Barker - University of Auckland "Development of New Lipophilic Bcl-2 Inhibitors for Pediatric Glioblastoma Multiforme Treatment" Cure Kids NZ Project Grant

Chris Bumby - Victoria University of Wellington "Green Steel Heater Technology" Kiwinet Tier 2

Jack Chen - Auckland University of Technology "Spherelose™" KiwiNet Tier 2

Kai Chen - Victoria University of Wellington "Photo-responsive thrombin inhibitors enable precise control of localised antithrombotic therapy" Heart Research Institute Internal Grant

Matthew Cowan – University of Canterbury

- New Zealand Product Accelerator Master's Scholarship
- Consulting projects (12 weeks)
- Investment into start-up company Permeance Limited

Laura Domigan – University of Auckland

• "CellCo Aotearoa: New 5th Quarter Products (Opo Bio Application)" AgMardt • Seed funding for Opo Bio Ltd

Aaron Marshall - University of Canterbury Fee for service - Zincoverv

Duncan McGillivray - University of Auckland Consultancy on a legal case

Volker Nock - University of Canterbury "Microfluidic assays for in-field pathogen detection" Postgraduate Scholarship Grant - Ministry of Primary Industries

Geoff Waterhouse - University of Auckland

- "Efficient catalysts for the synthesis of liquid biofuels" Energy Education Trust of New Zealand Project Fund
- "Rechargeable metal-air batteries" Philanthropic donation

Cameron Weber - University of Auckland "Tisane - Sleak Initial Tests" Industry fee-for-service – New Zealand Product Accelerator "Supercare NZ Ltd - Envirocare" Industry fee-for-service - New Zealand Product Accelerator

Geoff Willmott - University of Auckland

- Fonterra-sponsored PhD studentship
- · Fonterra-sponsored summer studentship

Ben Yin - Victoria University of Wellington "System design and consultation for Globex Engineering" Consultation fee

2022 International Funding

Jenny Malmström - University of Auckland "SANS study on conducting polymer hydrogels (pNIPAM/PPy) to investigate temperature responsiveness, physically actuating properties, and interpenetration of components" SANS experiment

Cameron Weber - University of Auckland "Understanding the Effect of Co-Solvents and Composition on the Amphiphilic Nanostructures of Ionic Liquids and Deep Eutectic Solvents" Australian Synchrotron Beamtime

2022 University Internal Funding

Ebu Avci - Massey University "Reconfigurable Microrobots with Programmable Assembly Behaviour" Massey University Strategic Research Excellence Fund

Kai Chen - Victoria University of Wellington "Toward next-generation terahertz spectrometer with spintronics emitter and advanced femtosecond laser" Faculty Strategic Research Grant

Patricia Hunt - Victoria University of Wellington "SNAP: VUW Hub for Simulation, Numerical methods, Analytics and Programming" Faculty Strategic Research Grant

Jon Kitchen – Massev University "On Surface CO 2 catalysis: Lanthanide-based coatings for CO 2 activation - towards a CO 2 economy" Massey University Strategic Research Excellence Fund

Erin Leitao - University of Auckland

• "FMT Fostering Collaborations" Faculty of Science • "Transdisciplinary fund for PFAS free Aotearoa" Faculty of Engineering

Luke Liu - Victoria University of Wellington "Hydrogen adsorption in covalent organic frameworks (COFs)" External Research Incentivisation Funding

Duncan McGillivray - University of Auckland "Air Pollution and Environmental Equity in Aotearoa New Zealand" Postdoctoral position

Franck Natali - Victoria University of Wellington "Fundamental understanding of the nitrogen - lanthanide chemical reaction for green and effective ammonia production" Research Excellence Award

Volker Nock - University of Canterbury Automatic Milling Machine - CAPEX

Jadranka Travas-Sejdic - University of Auckland

- "A highly programmable bioactive delivery platform based on novel conductive polymers" Research Development Fund: Fostering Collaboration
- "Near Miss Research Centre: Innovative Materials for Health" Research Development Fund

Geoff Waterhouse - University of Auckland

"Electrifying hydrogen peroxide synthesis" Faculty of Science Research Development Fund

Cameron Weber - University of Auckland

"Intensifying Hydrogenation Reactions in Ionic Liquids Using a Vortex Fluidic Device" New Staff Fund

Ben Yin - Victoria University of Wellington

- "Programming mixed matrix membranes for CO2 capture" Faculty Research Establishment Grant
- · Mātauranga Māori Research Fund

Into the marketplace

After 20 years of Commercialisation and Industry Engagement at the MacDiarmid Institute, there are many successes and stories to tell. For this year's Annual Report we are featuring a perspective on the beginnings, growth, present and future of the Institute's path to impact in this area. Meanwhile, the Institute had an outstandingly successful year at the 2022 KiwiNet Research Commercialisation Awards, and the award winners provide an excellent illustration of our trajectory.

INTO THE MARKETPLACE

20 years of commercialisation and industry engagement

At the MacDiarmid Institute, we like to say that "commercialisation is in our DNA". From the start, our founding director Sir Paul Callaghan's vision was to stimulate greater productivity and diversification in New Zealand's economy through advanced materials science. Sir Paul put forth this vision in two books with titles that speak for themselves: Wool to Weta, and (with Shaun Hendy) Get off the Grass. Sir Paul's legacy was honoured in the naming of Callaghan Innovation. His company Magritek, that began as a start-up, is now a global leader

in manufacturing NMR, and won the Commercialisation Impact Award at this year's KiwiNet Awards. In his acceptance speech, Magritek CEO Dr Andrew Coy spoke of Sir Paul's vision for that company using another of our favourite quotes at the MacDiarmid Institute:

"We will be good at what we are good at."

SIR PAUL CALLAGHAN

Dr Andrew Coy accepting the KiwiNet Commercialisation

Impact Award on behalf of Magritek

"The MacDiarmid Institute was really helpful in the early stages of the company and helped to smooth the transition out of the lab and into the business."

FRASER HUGHSON, CO-FOUNDER AND CTO, ALLEGRO ENERGY

Having a vision is great, but commercialisation is a tough business and tangible commercial impact was not quickly forthcoming during the first decade of the Institute. A corner was turned in 2011 with the founding of Engender, a MacDiarmid-affiliated spin-out company led by Professor Cather Simpson, who was awarded the Commercialisation Icon Award at this year's KiwiNet Awards. Other influential figures included Ray Thompson, an entrepreneurial Board Chair, and Professor David Williams, who brought commercial experience from a

Professor Cather Simpson was awarded the Commercialistion Icon Award at the KiwiNet Awards

successful career in the UK. Through the work of such pioneers, connections were built between researchers and investors, and the roles of those in the commercialisation ecosystem became clearer. After generating three affiliated spinouts prior to 2011, the Institute can now count 27. Of those, 41% have MacDiarmid Institute women (Investigators and alumni) as founders or CEOs, with a higher proportion of women founding and leading these companies in more recent times.

<u>51</u>

Today, the MacDiarmid Institute is regularly producing at least two affiliated spin-out companies per year, and five of our researchers indicate their intention to spin out a company in 2023. Our contribution to industry partners is similarly strong and regular. With the ecosystem maturing, the Institute introduced initiatives such as seed funding for commercial projects, enhanced industry engagement through an Interface programme and Tech Week events, and a focus on training opportunities for all members of the Institute. Our Co-Director Professor Justin Hodgkiss was instrumental in many of these changes, and this year Justin won the Research Entrepreneur Award at the KiwiNet Awards, having led the spectroscopy spin-out Advemto in addition to his contribution to commercialisation at the Institute. The Institute has performed excellently at the KiwiNet Awards for several years now, and there is a clear correlation between MacDiarmid Institute support and successful outcomes.

Dr Shalini Divya won the Breakthrough Innovator Award in 2021

Co-Director Professor Justin Hodgkiss won the Researcher Entrepreneur Award at the 2022 KiwiNet Awards

Associate Professor Carla Meledandri won the Emerging Innovator Award in 2016

KiwiNet awards winners with MacDiarmid Institute affiliations 2016 – 2022

Year	Award	Name	Startup company
2016	Emerging Innovator	Carla Meledandri	
2016	Researcher Entrepreneur	Cather Simpson	Engender, Orbis
2016	Supreme	Cather Simpson	Engender, Orbis
2019	Breakthrough Innovator	Shalen Kumar	AuramerBio
2019	Commercialisation Professional	Will Charles	
2019	Researcher Entrepreneur	Margaret Brimble	Sapvax
2019	Supreme	Margaret Brimble	Sapvax
2020	Breakthrough Innovator	Eldon Tate	Inhibit Coatings
2020	Researcher Entrepreneur	Jim Johnston	Noble Bond, Inhibit Coatings
2020	Supreme	Jim Johnston	Noble Bond, Inhibit Coatings
2021	Breakthrough Innovator	Shalini Divya	TasmanIon
2022	Breakthrough Innovator	Jonathan Ring	Zincovery
2022	Commercialisation Icon	Cather Simpson	Engender, Orbis
2022	Researcher Entrepreneur	Justin Hodgkiss	Advemto
2022	Commercialisation Impact	Magritek	Magritek

Spin-outs formed in 2022

Matthew Cowan - University of Canterbury Permeance Limited Laura Domigan - University of Auckland Opo Bio Limited

Franck Natali - Victoria University of Wellington Liquium

Shane Telfer - Massey University Captivate Technologies

Affiliated start-up activity data from 10 companies (8 of these are pre-revenue) for the 2022 calendar year:

Total number of employees (FTE): 47.9 Number of PhDs employed: 23 Number of MacDiarmid Alumni employed: 18 Number of patents applied for: 9 Number of patents granted: 4 Amount spent on R&D: \$5.7 million Amount of capital raised: \$10.3 million

Of these companies, 8 are aiming to raise capital during the coming year (2023) Within our funded researchers, 5 have indicated the intention to spin-out a new company in the coming year (2023)

The MacDiarmid Institute's research is now called 'Deep Tech' by the various investors who beat a path to our door

We are not standing still, having introduced commercial skills training webinars, Science Advisory Panels, CEO breakfasts and the Career and Relevant-to-Industry Skills Programme (CRISP) under current Commercialisation Manager Kevin Sheehy. Meanwhile, the MacDiarmid Institute's research is now called 'Deep Tech' by the various investors who beat a path to our door - that is, research and technology based on scientific knowledge that is hard-won over reasonably long timeframes, and that is difficult to replicate. We are also increasingly embracing 'Clean Tech' in alignment with the Institute's focus

on materials for sustainability, as exemplified by our alumnus Jono Ring (CEO, Zincovery) who won the Breakthrough Innovator Award at the KiwiNet Awards. Clean Tech directly links to one of Sir Paul's goals, making New Zealand "a place where talent wants to live", and there is also strong resonance with the values embedded in the rapidly growing Māori economy.

Clean Tech: it's difficult to think of a more appropriate and challenging focus for the Institute's impact over the next 20 years and beyond.

Associate Professor Franck Natali, founder of Liquium

Associate Professor Aaron Marshall and Jono Ring, co-founders of Zincoverv

Alumni Business Scholarship recipients & where are they now

2017 Business Scholarship recipients

Manmeet Kaur Prior to being awarded the Alumni Business Scholarship, Dr Manmeet Kaur had been a postdoctoral research fellow at the University of Auckland and worked as a research scientist at Hi-Aspect Limited, a MacDiarmid Institute affiliated spin-out. She says her previous academic and industrial research experiences motivated her to apply for the scholarship.

"Knowledge in IP," marketing and commercialisation are fundamental to bridging academia and industry."

With the scholarship, Manmeet further developed skills required to identify new investments and solutions and make sense of the ever-present uncertainty associated with early-stage ventures and start-ups.

Master of Commercialisation and Entrepreneurship (University of Auckland)

2022: Manmeet now works at Verital Innovations as a business development manager. She says the business scholarship really helped her bridge from science into her new role.

Matthew Cowan Dr Matthew Cowan is an Associate Investigator at the MacDiarmid Institute and a chemical engineer at the University of Canterbury, focussing on using nanotechnology to make the most out of solar energy.

For Matthew, the scholarship supported him towards his goal of introducing innovative technologies to transform the petrochemicals industry.

"I'm passionate about making a positive impact on the environment and society by adding to New Zealand's hightech manufacturing ecosystem."

Postgraduate Diploma in Business and Administration (University of **Canterbury**)

2022: Now a senior lecturer in engineering at the University of Canterbury. His research focusses on enhancing sustainability by reducing the energy used and emissions produced by the behind-the-scenes processes we use every day.

Nihan Aydemir Dr Nihan Avdemir completed her PhD in 2016 at the University of Auckland in micro and nanostructure organic conductor biosensors under the supervision of Principal Investigator Professor Jadranka Travas-Sejdic. Nihan then worked as a postdoctoral chemist at Plant and Food Research, focussed on mimicking how insects use proteins to

The Alumni Business Scholarship supported Nihan's work in her and Jadranka's start-up company, Spot-Check, which won the 1st place in the University of Auckland's Velocity 100k Challenge in 2016.

smell.

Master of Commercialisation and Entrepreneurship (University of Auckland)

2022: Nihan is now assistant professor at Gebze Technical University in Turkey and technology transfer manager at Teknopark İstanbul A.Ş. which specialises in defence and space manufacturing.

Brendan Darby As part of his PhD in physics, Dr Brendan Darby developed IP for a new technique to analyse 'cloudy' solutions. He helped launch start-up company MaramaLabs, which commercialised the spectrophotometer technique known as CloudSpec, used in industries such as viticulture and water treatment.

The Alumni Business Scholarship allowed Brendan to kickstart his career as an emerging commercial scientist by exposing him to business practices and fundamental corporate operations that would inevitably be asked of him in his future career as founder of MaramaLabs.

2022: Brendan is now also CEO of MaramaLabs, which has developed patented UV-Vis spectroscopy technology and cloud software for rapid and accurate analysis of cloudy liquids. Target markets include winemaking, pharmaceutical manufacturing, and water quality testing. In 2021 MaramaLabs raised \$1.25m of growth capital.

2018 Business Scholarship recipients

Hannah Zheng

Dr Hannah Zheng

completed her PhD in

physics at Te Herenga

Eldon Tate Dr Eldon Tate developed a

new piece of IP technology during his PhD and went on to co-found start-up company Inhibit Coatings Ltd with MacDiarmid Institute Emeritus Investigator Professor Jim Johnston. With the support of the Business Scholarship, Eldon undertook the Advanced Management Programme offered by Melbourne Business School.

Advanced Management Programme (Melbourne **Business School**)

2022: Eldon has been **CEO of Inhibit Coatings** since 2016. Inhibit Coatings makes antimicrobial coatings for food safety and healthcare applications. In 2022 the company received one of four of the Australia New Zealand Leadership Forum Trans-Tasman Innovation and Growth Awards.

Waka - Victoria University of Wellington, studying with MacDiarmid Institute Principal Investigator Associate Professor Natalie Plank. "I was keen to learn more about the global business sector in order to underpin the

projects." The Alumni Business Scholarship enabled Hannah to complete a Postgraduate Diploma in Global Business at AUT while working as a materials scientist at startup company Revolution Fibres.

I could bring to

Postgraduate Diploma in Global Business (Auckland University of Technology)

2022: Hannah is currently a regulation specialist at NanoLayr (formerly Revolution Fibres), with the key responsibility of directing compliance strategy for new and existing products in line with global regulatory requirements.

Rob Staniland Dr Rob Staniland

completed a PhD in

technical knowledge

chemistry at the University of Canterbury with Principal Investigator Professor Paul Kruger before taking up a position at Mint Innovation, a deeptech start-up company. Rob was keen to study Commercialisation and Entrepreneurship in order to better take scientific solutions out of the laboratory and to the market.

Postgraduate Certificate of Commercialisation and Entrepreneurship (University of Auckland)

2022: Working as R&D lead at Mint Innovation. In late 2020, the company raised \$20m to go global in an investment round led by Rob.

Sam Yu

Dr Sam Yu completed a PhD at University of Canterbury supervised by Emeritus Investigators Professors Alison Downard and Richard Blaikie. Sam then used his Alumni Business Scholarship to complete professional development short courses in governance and leadership management from the Institute of Directors and from Icehouse, to further develop his board and investor experiences. Since then, he has been heavily involved in business development and marketing for start-ups wishing to commercialise technologies from within the New Zealand research sector.

Professional development short courses (Institute of **Directors and Icehouse**)

2022: Sam currently works as a tech investor and board advisor at Sky High Business Consultancy and Advisory. He is also on the Scientific Advisory Board for Matū and is a mentor for Te Ōhaka - Centre for Growth and Innovation.

2019 Business Scholarship recipients

Akshita Wason Dr Akshita Wason

completed her PhD at the University of Canterbury under supervision of Emeritus Investigator Professor Juliet Gerrard, and had worked at start-up company Hi-Aspect, and with the Office of the Prime Minister's Chief Science Advisor.

Akshita used the scholarship to develop her skills in taking deeptech projects from local market launch through to establishing global presence, and to study policy-induced effects on the innovation ecosystem.

Master of Commercialisation and Entrepreneurship (University of Auckland)

2022: Akshita currently works in Government Incentives as an engagement team lead at Callaghan Innovation.

Lita Lee

Dr Lita Lee completed her PhD at the University of Canterbury supervised by Emeritus Investigator Professor Alison Downard. She then took up a position at Mint Innovation.

Through studying a Postgraduate Certificate in Commercialisation and Entrepreneurship, Lita gained a better understanding about the challenges involved in the commercialisation process and ways to assist startup companies with their commercialisation journey.

Postgraduate Certificate in Commercialisation and Entrepreneurship (University of Auckland)

2022: Lita continues to work at Mint Innovation as a senior scientist. In 2020, she was guest speaker at the MacDiarmid Institute Future of Work: Sustainability alumni event.

Amy Zhu

Dr Amy Zhu completed her PhD on the development of novel biosensors based on conducting polymers under the supervision of Principal Investigator Professor Jadranka Travas-Sejdic. She then worked as a research fellow at the University of Auckland.

Amy used her scholarship to gain practical tools and a solid commercialisation mindset. Her long-term goal is to pursue an R&D and science-led commercialisation career with a focus on translating biomaterial research into products that can benefit human wellness and social wellbeing.

Postgraduate Certificate in Commercialisation and Entrepreneurship (University of Auckland)

2022: Amy is still working as a research fellow at the University of Auckland with research interests in the development of novel portable and wearable sensors based on conducting polymer; fabrication of 2D and 3D electronics; and development of large-scale manufacturable sensing platform.

2020 Business Scholarship recipients

Anna Farquhar

Dr Anna Farquhar completed her PhD at the University of Canterbury with Emeritus Investigator Professor Alison Downard and worked as a senior scientist in the R&D team at Aeroqual in Auckland as an electrochemist, focussing on electrochemical gas sensors, and ensuring their reliability in monitoring air pollution.

Anna commenced her scholarship in 2021, gaining skills in business, product management and leadership to help develop New Zealand's reputation in the global air quality industry.

Master of Business Development, **Innovation and Product** Management (University of Auckland)

2022: Anna is now R&D team leader at Aeroqual Ltd, a New Zealandbased company that specialises in sensor based real-time ambient air quality monitoring. Her research focusses on electrochemical gas sensors, and their use in ambient air measurements. She spoke at our Techweek 2021 in Christchurch, and contributed to our Regional Lecture Series 2022 event in Tauranga.

Stephen Lo Prior to completing his PhD in chemistry at the University of Auckland, supervised by Associate Investigator Professor David Barker, Dr Stephen Lo had begun a Postgraduate Diploma of Bioscience Enterprise at the University of Auckland. The Alumni Business Scholarship enabled him to complete this programme and commence the Master of Bioscience Enterprise and develop the knowledge and skills required to bring valuable products from scientific research towards

Postgraduate Diploma, **Bioscience Enterprise** (University of Auckland)

the commercial space.

2022: Stephen is commercialisation manager at UniServices (Engineering and Digital Technologies) supporting researchers at the University of Auckland to evaluate, develop and manage the commercial opportunities for their innovative technologies, research and ideas that will have significant impact in the world. Stephen presented at the MacDiarmid Institute Careers and Relevant-to-Industry Skills Programme (CRISP) 'The Friendly TTO' workshop in 2022.

Udbhav Ojha

After completing his PhD in condensed matter and materials physics at Te Herenga Waka -Victoria University of Wellington under Principal Investigator Professor Nicola Gaston, Dr Udbhav Ojha joined financial technology services provider firm FNZ where he worked as a senior analyst developer in the software development team.

The Alumni Business Scholarship enabled Udbhav to develop skills in business accounting and finance that he planned to incorporate in his work from a fintech product development standpoint.

Postgraduate Certificate, **Business (Professional)** (Te Herenga Waka -Victoria University of Wellington)

2022: Udbhav is currently senior developer at Adminis, where he contributes to design and implementation. overarching technology, and building the team.

Davoud Zare

Dr Davoud Zare completed his PhD at Te Herenga Waka - Victoria University of Wellington with former MacDiarmid Institute Investigator Professor Kate McGrath. He had previously worked as a research scientist/engineer at the Fonterra Research and Development Centre in Palmerston North and says he could see a need for innovation in today's business environment. The Alumni Business Scholarship enabled him to learn more about how to commercialise academic knowledge.

Davoud will use his scholarship to further develop his managerial abilities and business acumen, to unify it with his existing scientific skillset.

Master of Business Development: Designing for Sustainability. **Business (University of** Auckland)

2022: Davoud is currently senior research scientist/ engineer and sustainability advocate at Fonterra and the key contact for a research collaboration with the MacDiarmid Institute.

Patent applications

2021 Business Scholarship recipients

Dr Maryam Shojaei completed her PhD in chemical and process engineering at the University of Canterbury, under the supervision of Principal Investigator Associate Professor Aaron Marshall, and then focussed her research on developing advanced electrodes for flow batteries.

Maryam's interests lie in the intersection between science and industry. The Alumni Business Scholarship helped her develop the skills required to take her science into the commercial space.

Postgraduate Certificate in Business (University of Canterbury)

2022: Maryam currently works in the three waters area at Christchurch City Council as a water engineer/project manager. She spoke at our Techweek 2022 event in Christchurch and at our Regional Lecture Series 2022 in Nelson.

Samuel Martin Treceño Dr Samuel Martin Treceño completed his PhD at the University of Canterbury in chemical and process engineering, supervised by Principal Investigator Associate Professor Aaron Marshall, and began work as a policy advisor at the Ministry of Business, Innovation and Employment (MBIE). He says the scholarship will help build his business acumen and lead strategic conversations in the policy space.

Postgraduate Certificate in Business (Professional) (Te Herenga Waka -Victoria University of Wellington)

2022: Samuel is currently a senior analyst at Te Uru Rākau – New Zealand Forest Service.

2022 Business Scholarship recipients

Vipin Kumar Dr Vipin Kumar completed his PhD in inorganic chemistry at the University of Auckland with Associate Investigator Dr Erin Leitao. Vipin now works as a development chemist at Hexion Inc. With this scholarship, Vipin intends to develop a practical and theoretical understanding of business management/ development. He says this along with his scientific skillset will help him to develop and commercialise novel and innovative products.

Postgraduate Diploma in Business (University of Auckland) Dr Farzana Fadakar completed her PhD in applied physics and engineering at Te Herenga Waka - Victoria University of Wellington with Emeritus Investigator Professor Bob Buckley. Having worked as a scientist at Measurement Standards Laboratory (MSL), as an R&D advisor for the RDTI scheme, and as an investment manager at the Ministry of Business, Innovation and Employment (MBIE), Farzana has extensive experience and knowledge of the New Zealand science innovation ecosystem. She says she will use this scholarship to sharpen her technical and commercial leadership skills, build partnerships, and learn about market and business trends.

Farzana Fadakar

"My ultimate goal is to lead deep tech ventures to create the next New Zealand unicorn."

Postgraduate Certificate in Business (Professional) (Te Herenga Waka -Victoria University of Wellington) Chris Bumby, Rod Badcock and Dylan Guja

Chris Bumby, Rod Badcock, Jianzhao Geng, James Rice

Chris Bumby, Rod Badcock, Jianzhao Geng, James Rice

Jack Chen, Bryan Andres Tiban Anrango

Geoff Jameson

Aaron Marshall

Kim McKelvey

Ben Yin

Patents granted

Matthew Cowan

Nathaniel Davis

Geoff Jameson

Franck Natali, Ben Ruck, Joe Trodahl

Franck Natali, Ben Ruck, Joe Trodahl, Jay Chan

Simon Granville, Eva Anton, Franck Natali, Ben Ruck, Joe Magnetic materials and devices comprising rare earth nitrides. EP3127125A2

	A mechanically-switched superconducting flux pump. AU2022902496A0
9	High temperature superconducting switches and rectifiers. WO2022164330A1
9	Improvements in superconducting switches. WO2022164329A1
	Janus-type spherical cellulose nanoparticles
	Hairpin DNA enzyme inhibitors. AU2022902039
	Methods for Processing Materials Containing Iron and Zinc
	Scanning bubble electrochemical microscopy
	System, method, and apparatus for enhancing a fluid.
	Selective adsorption of gaseous alkenes into non-porous copper(I) complexes: controlling heat of adsorption and loading pressure. US11517877B2
	Photon multiplying material. US11286420B2

Photon multiplying material and opto-electronic devices equipped therewith. US11217761B2

Single stranded DNA enzyme inhibitors. WO2022162536A1

Ammonia production method and apparatus for ammonia production. US11498844B2

Rare earth nitride structures and devices and method for removing a passivating capping. US11217743B2

Early Funding to Underpin Commercial Success

Commercial skills training workshops for all students and investigators

Investigators who have been supported through the OnBoard governance training programme

Alumni who were supported for Exponential Founders entrepreneurship mentoring

Projects which were funded for initial commercial scoping MacDiarmid Institute People with commercialisation

commercialisation skills and know-how

1 University of Otago 1 Massey University 2 University of Canterbury 6 University of Otago 9 Victoria University of Wellington

> ↓ 2 Board Members 9 Students / Alumni 8 Investigators

including

ha nom

Founders, CTOs, CEOs of start-up companies

KiwiNet Awards

9 KiwiNet nominations 15 KiwiNet Winners

Into the community

Continuing Sir Paul's 20-year legacy of educational outreach and community engagement has been challenging through the pandemic, but the Institute's outreach continues to go from strength-to-strength. Our NanoCamp and DiscoveryCamp prove ever more popular, and our Regional Lectures strike a chord. Furthermore, our strong partnerships continue to enable us to take our engagement throughout all parts of Aotearoa New Zealand which included our first trip to Rēkohu/Chatham islands this year as part of their festival of science. Sir Paul would no doubt be immensely proud of our engagement.

DiscoveryCamp over the years

Our first ever Discovery Awards (the precursor to DiscoveryCamp) ran in the summer of 2008/2009 with five Year 12 and 13 Māori and Pacific Island students spending time over the summer in the labs of MacDiarmid Institute researchers, as well as receiving a \$1k cash award. The awards aimed to identify and encourage capable Maori and Pacific Island Year 12 and 13 pupils to enroll in science courses at university level.

Kate Tarawhiti, who was one of the first Discovery Award recipients in 2008/2009, says the Award was very valuable for her at that age and that the connections were invaluable.

"It really showed me what university was like. I remember going into a physics lab and doing nanotechnology - it really gave me an insight into the practical things you can do with science.

"The Discovery Awards introduced me to the Māori Centre at the University of Otago, a key contact for me throughout my studies."

Kate says the students were also invited to AMN4 in Dunedin.

"All of us were invited to this flash conference, given front row seats and the chance to talk to a whole bunch of international scientists. I'm so thankful for those opportunities.

"Programmes like this are very important for Māori students."

These days what is now DiscoveryCamp brings students to a centre (this rotates around the country from year to year) to spend a week in MacDiarmid Institute labs, hearing from PhD students, running

experiments, meeting with our Deputy Director Māori, visiting government and more.

2014 Discovery Awards alumnus Edward Popham went on to study mechanical engineering at the University of Canterbury.

"My Discovery Awards experience helped me strengthen my passion towards science and its use in day-to-day life." He is now a Lines Asset Management Planner at Transpower.

"My Discovery Awards experience helped me strengthen my passion towards science and its use in day-to-day life." EDWARD POPHAM

Discovery alumna Mariah McDonald cites her time as a Discovery Awards student in MacDiarmid Institute labs at the University of Canterbury as setting her course for her career.

"Receiving the Award when I was 16 invoked a passion for engineering and for research which has hugely influenced my choice to pursue the PhD and I am incredibly grateful to the institute for providing me with the initial experience. As part of the Discovery Awards, Maan Alkaisi showed me around the electrical engineering department at the University of Canterbury and I spent most of my time in the nanofabrication lab. This cemented my desire to study engineering and opened my mind to the idea of doing postgraduate research work."

Inaugural Discovery Awards recipients Nikita Hunia and PJ Campbell from Hutt Valley High School in Wellington, Kate Tarawhiti, Christchurch Girls' High School, Ben Jones, St Bedes College, Christchurch and Jardin Rose from Buller High School in Westport

Discovery Awards recipients at AMN4 in Dunedin, February 2009. Although initially planning to study health sciences, Kate went on to complete a Bachelor of Science in psychology and then later a law degree

Inaugural Discovery Awards students speaking with Nobel Laureate Professor Sir Harry Kroto at AMN4

During her undergraduate degree in mechatronic engineering, Mariah picked up a MacDiarmid Institute summer lab internship. "In the summer of 2016/2017 I received a student scholarship from the MacDiarmid Institute in which I worked as a lab assistant to a PhD student in the Canterbury nanofabrication lab which further contributed to my passion for research and desire to do a PhD."

Discovery alumnus Eden Skipper says that the Discovery Awards were his first experience at a science forum or any other forum for that matter, leadership, culture and so on.

"Attending Discovery Awards gave me confidence to put myself out there more and just go for it." Eden completed a Bachelor of Science degree in statistics at the University of Canterbury and is now Special Adviser - Māori Capability at the Ministry for Primary Industries.

Discovery alumna Lizzie Tafili attended the Discovery Awards at the end of 2013 and the beginning of 2014.

"Having a fortnight length internship at Callaghan Innovation felt like working at the candy land equivalent for a science junkie where every single day was absolutely enthralling. This experience affirmed my love and passion for science so that I went on to complete a Bachelor of Biomedical Science majoring in medicinal chemistry and molecular pharmacology at Victoria University."

"It felt like working at the candy land equivalent for a science junkie where every single day was absolutely enthralling."

LIZZIE TAFILI

NanoCamp over the years

Dr Leighton Watson was 17 when he attended the MacDiarmid Institute's first ever NanoCamp in 2009. He cites the experience as key to giving him an early taste of research life.

"NanoCamp gave me early exposure to the university environment and to scientists who were excited by their research and determined to make a difference in people's lives." Leighton, who returned to Aotearoa New Zealand in 2020 as a recipient of a Rutherford Foundation Postdoctoral Fellowship from the Royal Society Te Apārangi, has an honours degree in geophysics from the University of Auckland and a PhD from Stanford. He says he still recalls fondly his week at NanoCamp all those years ago.

"It was as much the fellow NanoCampers I was with, who were energetic and excited about science like me, and I thought - it would be great to work with similar people".

Dr Leighton Watson, NanoCamp alumnus

NanoCamp is a week-long science camp for Year 12 and 13 students held in MacDiarmid Institute labs. The Institute's inaugural NanoCamp was held at Massey University during the week January 19-23, 2009. Principal Investigator Professor Shane Telfer who led the first NanoCamp says NanoCamp was an unreserved success.

"NanoCamp clearly tapped into a previously unmet demand for this kind of event amongst high school students who are interested in science."

PROFESSOR SHANE TELFER

Callista Booth-Richards attended NanoCamp at the University of Canterbury in January 2021 and credits the camp and the people she met for changing her study plans from a double major in chemistry and plant biotechnology, towards a PhD in nanotechnology.

"NanoCamp really shaped what my future will look like." callista booth-richards

"When I heard (Principal Investigator) Professor Paul Kruger talking about the MacDiarmid Institute's work on sustainable materials, I just knew, that's what I want to do. So I set about finding out what I'd need to study or do at undergrad level in order to be eligible for one of the PhD scholarships the Institute offers. " She says this also led to her asking her supervisor (Associate Investigator Courtney Ennis) if she could do a six-week part-time research project while in her second year of Chemistry at the University of Otago. "It's been such a treat to be working on this research project and to be actually working on metal organic framework (MOF) samples sent by Paul Kruger."

She says she's now really interested in MOFs or bioplastics.

Left: Inaugural 2009 NanoCamp attendees at Massey University

Right: Callista Booth-Richards in the chemistry lab at the University of Otago

From the lab bench to a start-up company

The theme for the 2022 MacDiarmid Institute Regional Lecture Series was 'To Industry and Beyond'. Our researchers travelled to Rotorua, Nelson, Tauranga and Hawke's Bay, speaking with science societies about the pathways from science to industry, and visiting schools.

Dr Shalini Divya speaking in Rotorua

Professor Shane Telfer and Dr Anna Farquhar speaking in Tauranga

6PM THURSDAY 13 OCTOBER 2022.

RIMU ROOM, SCION, **TĪTOKORANGI DRIVE** (FORMERLY LONG MILE RD), ROTORUA

PROF JUSTIN HODGKISS is Co-Director of the MacDiarmid Institute, Professor of Chemistry at Te Herenga Waka, Victoria University of Wellington, and Chief Scientist for the spinout company Advemto. His research involves develo new materials for next generation solar cells and biosensors, which has led to the development and commercialisation of scientific instrumentation.

DR SHALINI DIVYA is the Co-Founder and Chief Executive Officer of Tasmanlon and is based at VUW, where she received her PhD in Chemistry in 2020. Her discoveries in novel cathode materials for non-aqueous aluminium ion batteries are a core part of spinout company Tasmanlon's intellectual property. Shalini received the KiwiNet Breakthrough Innovator Award in November 2021.

Developing a scientifically-literate workforce

scientifically-literate workforce able to support the growth of the deep tech sector

Into the future

From the perspective of those who founded the Institute in 2002, we have literally arrived in the future. The Institute has always advanced science with an endgame and realworld impact, and our graduates personify this. These days not only do our researchers launch companies into the deeptech economy, but we launch tech-savvy graduates into careers in those same companies, as well as in government and wider industry.

मुख्य

a e

MESA is born

Principal Investigator Associate Professor Natalie Plank recalls walking into the offices of then Deputy Director Shaun Hendy and Centre Manager Margaret Brown back in 2010 and pitching the idea for a MacDiarmid Institute student-led organisation to support training for and connections between students.

"I remember popping into the MacDiarmid offices on Level 4 and suggesting to Shaun and Margaret that I thought we needed to do something to support students to upskill and to get together."

Natalie, who became the inaugural chair of the new MacDiarmid Emerging Scientists Association (MESA), says that back in 2010 students and postdocs often didn't really know what the Institute was, and many felt little engagement or connectivity to others around the country. She says her idea had come about in part because of her experience in the 'Grad School UK' during her time studying in Edinburgh. She says the Grad Programme had connected students from throughout the UK and supported them to gain more 'soft skills' in a fun way.

She plays down her role in the establishment of MESA.

"No idea exists in a vacuum. I'd loved the feelings of connectedness I'd had as a PhD student in the UK, being part of a bigger institute and bigger physics department. I wanted to emulate a similar sense of linkages and connectedness here."

As the conversation developed, she gathered around her a group who would go on to become the first MESA committee, including Franck Natali, Keoni Mahelona, Elf Eldrige, Shrividya Ravi and Ben Mallet (all from Victoria University of Wellington (VUW) or Industrial Research Limited (IRL)) along with Andrew Gross and Ojas Mahapatra from Canterbury, and Cosmin Laslau from University of Auckland (UoA).

"We wanted something geared towards students, so we took over the student and postdoc part of the annual symposium that year, and organised good speakers on topics that we as students needed to hear about. We had a budget, and we ran a Raman workshop led by Joe (Trodahl). And Cosmin organised the first bootcamp, just outside of Auckland."

The highlights for Natalie are the connections between students and with researchers, the way the culture has shifted, and the opportunities opening up through the bootcamps and other events.

"I could see students gain confidence from workshops, particularly the workshop on dealing with failure. And I joined (then MBIE Partnerships Manager) Kjesten Wiig and (alumnus and start-up CEO) Andrew Preston and other speakers at a more recent bootcamp where the conversation was about future pathways and opportunities for materials science graduates in industry and government and elsewhere."

Current MESA co-chair Shikeale Harris, who is a third year PhD student at Massey University, says that from what she sees, Natalie's original vision for MESA has come to pass.

"We're one family, one team."

ASSOCIATE PROFESSOR NATALIE PLANK

"100% MESA still aligns with what Natalie planned. Without MESA there'd be no opportunities to make friends with researchers in similar fields."

She says being a researcher in a specialised field can feel isolating.

"It's not necessarily the case that the three students you happen to be sharing a lab with are working on the same research as you. So being able to, through MESA, develop a shared experience with others doing the same experiments - with all the good, the bad and the ugly - is beneficial for mental health, for building bonds and networking."

She says this period of time in young researchers' lives may well be the hardest they've endured to date due to constant failure and the constant unknowns for years on end.

"So getting opportunities to reach out and be heard and knowing we're not all alone is so important in my opinion.

"The workshops offer students the chance to step out of their research for a bit, do something they're interested in, in a relaxed environment without financial obligations. By providing low obligation and free workshops, bootcamps and other events to a busy and often stressed group of people who can take newly learnt skills, MESA helps us all grow in our own time and with the support of our peers."

Fellow co-chair Dr Azy Hashemi, a postdoc at the University of Canterbury, recalls giving a student talk and receiving a prize at the 2014 Symposium.

"It was really affirming to me at the time to know my work mattered to the rest of the MacDiarmid Institute. As a student - this can be daunting - you sometimes wonder - does anyone else care?"

Inaugural MESA committee comprising back, left to right: James "Elf" Eldridge (IRL Gracefield), Ben Mallett (IRL Gracefield), Andrew Gross (Canterbury), Ojas Mahapatra (Canterbury), Franck Natali (VUW), Cosmin Laslau (Auckland) Front, left to right: Natalie Plank (VUW). Shrividya Ravi (VUW), Keoni Mahelona (VUW)

She regrets not having been more active in MESA while a student.

"I felt I didn't have spare time, but I wish I had done more of the workshops and meetups."

Now that she's co-chair and able to make decisions that can influence and provide opportunities for students, she sees the MESAled events as having real impact for students.

"MESA is a one stop go-to place for skills building."

Shikeale says that students like to participate in different ways and that it's great to have the budget to involve as many people as possible

and to support MESA members in all their diversity.

"For some, it's networking. For others it's the workshops. We understand that everyone is different, no two MESA members are the same, so we strongly believe that providing a range of opportunities is important to allow maximum involvement throughout the year. We're so grateful that MESA has been given this opportunity by ways of financial and other support from the MacDiarmid Institute to do so.

"The people in MESA are a really interdisciplinary cohort of interesting people who come from very different backgrounds, with very different life and research experiences, and who will all go off on their own paths down a myriad of career pathways. Through MESA we can all share experiences (the good, the bad and the ugly) and know we're not alone in this journey."

She says the MESA process is organic and continually changing.

"The recent initiative to give third year students access to the MacDiarmid LinkedIn alumni page will be beneficial to students looking for connections and job opportunities as they head towards graduation, as will opening the alumni newsletter to any student who wants to sign up, to get a feel for the opportunities that will arise closer to their hand in period."

Azy says that there's an ongoing need to educate Investigators that ALL affiliated students are MacDiarmid Institute students and able to be part of MESA, especially when the MacDiarmid Institute investigator is the co-supervisor. "This is an ongoing process."

Natalie agrees.

"One of the fundamental understandings was that ALL students associated with a MacDiarmid Institute Investigator would be part of MESA, part of the Institute.

"We're one family, one team."

2022 MESA report From the MESA Co-Chairs Azy Hashemi and Shikeale Harris

The year 2022 has been a great year for the MacDiarmid Institute Emerging Scientists Association (MESA). We are very happy that we have been able to hold our usual full variety of scheduled events such as workshops, welcome events and site visits, after the past two years facing event cancellations and many limitations due to Covid 19. As always, we kicked off the year by holding welcome events in each of our centres. These always have a great turn out and are a fantastic and fun way to start networking with other MacDiarmid Institute students from each centre.

MESA had two of the famous Python workshops, held in both the North and South Islands for the second year in a row, hosted by Massey and Canterbury Universities respectively, with special thanks to Ben Westberry for running the workshops. The Python workshops have been incredibly popular and sought after in the past few years and have an excellent turnout. Other MESA-organised events this year included an industry site visit to Mint Innovation in July, a 3D/CAD workshop at the University of Auckland in September, a video editing workshop at Victoria University of Wellington in October, and a video tutorial competition. We also held our extremely popular MESA bootcamp, which took place in the days following the MacDiarmid Symposium, in Wellington this December.

During the symposium, a very fruitful and engaging Q&A session was held between the MESA committee and the MacDiarmid Institute students, research assistants and postdoctoral fellows, with hugely engaged and really amazing discussions around inclusivity, diversity and student participation. As a result of this session, the committee is proposing changes to MESA's constitution and the way MESA is run, going forward into 2023.

Photos from the MESA bootcamp in 2022, Wellington

2022 MESA Committee: Georgia Richardson, Brianna Nally, Lara Browne, Calum Gordon, Isabel Cowlishaw, Roisin Mooney, Azadeh Hashemi, Ludwig Petters, Sarah Sale, Daniel Mak and Mohsin Ijaz

Wellbeing within the Institute

We continue to implement the recommendations from our 2020 Wellbeing Report by celebrating student and postdoc success via our internal newsletters, collecting information via our exit interviews (online and via Zoom) for graduating and departing students and postdocs, and supporting individual training sessions for personal development run by Associate Investigator Dr Emilia Nowak from Massey University.

As part of the recent Career and Relevant-to-Industry Skills Programme (CRISP), this year we held a hybrid in-person and zoom 'Developing Healthy Habits for Resilience and Wellbeing in the Workplace' module, facilitated by Julene Hope of Brightspot Consulting. Attendees were led through a day of evidence-based learning about wellbeing and resilience in the workplace, and supported to apply these

immediately through the creation of individual wellbeing plans. As part of the follow up process, participants were asked to consider resilience and wellbeing within their research experience and to provide feedback on how we can further assist in improving wellbeing within the Institute.

Feedback from both this wellbeing module and our exit interviews provided the basis of a 2022 addendum to the original 2020 Wellbeing Report. This addendum summarised progress since the original report and identified new potential initiatives. It was a valuable exercise to reflect on the efforts made by the Institute to improve wellbeing over the last two years and showed that despite the challenges of COVID, researcher and student views and experiences of the Institute had remained positive.

"Was good to know that there are others who go through similar stuff and how they cope with it."

"Excited to see more offerings!"

PARTICIPANTS WHO ATTENDED THE 'DEVELOPING HEALTHY HABITS FOR RESILIENCE AND WELLBEING IN THE WORKPLACE' MODULE

Career Internships

This year seven of our graduates interned with government and industry.

Sunandita Ghosh MBIE

Involved with the MBIE Contestible Investments contract management system, working across the different funding mechanisms. Reviewed and assessed project reports and contract variation requests.

UniServices Learned about the internal triage process that goes into assessing the commercial viability of an idea, including market analysis, creating a target product profile, and novelty searching/competitor analysis.

view.

Alyssa Thomas Ministry for the Environment Contributed to Aotearoa's Environmental Reporting Framework, including a case study on Kaipara Moana, and worked on projects across the Evidence Data and Insight's group's work programme.

Zeineb Ayed

Marama Labs Explored the CloudSpec ability to analyse cloudy wine samples without the need of any pre-preparation, working directly with the R&D team in determining the colour and phenolics of untreated wine samples.

Dion Thomas Wellumio Ltd Worked on the development of an NMR device for stroke diagnosis.

Into the metrics

Financials

	2021	2022
Income		
CoRE Funding	\$3,200,000.00	\$6,400,000.00
Surplus Carried forward	N/A	\$2,160,868.54
Total Revenue	\$3,200,000.00	\$8,560,868.54
Salaries and salary related costs		
Directors and Principal Investigators	\$152,672.99	\$733,610.16
Associate Investigators	\$—	\$—
Post-Doctoral fellows	\$—	\$346,154.48
Research/Technical assistants	\$71,004.78	\$401,088.05
Others	\$219,084.17	\$457,797.14
Total Salaries & Salary-related costs	\$442,761.94	\$1,938,649.83
Other Costs		
Overheads	\$167,933.72	\$756,544.54
Project Costs	\$302,736.00	\$1,389,905.63
Travel	\$3,795.00	\$81,303.18
Postgraduate students	\$121,904.80	\$1,459,226.68
Equipment depreciation/rental	\$—	\$46,549.74
Subcontractors	\$—	\$—
Extraordinary expenditure	\$-	\$ —
Total Other Costs	\$596,369.52	\$3,733,529.77
late partner invoices to be paid out in following financial year	\$973,165.58	\$820,364.92
Total CoRE Expenditure		
Total Expenses	\$1,039,131.46	\$5,672,179.60
with late invoices	\$2,012,297.04	\$6,492,544.52

\$2,160,868.54

\$1,187,702.96

\$2,888,688.94*

\$2,068,324.02

* Committed to independent postdocs starting in 2023

Net Surplus/(Deficit) with late invoices

At a glance

Headcounts by category
Emeritus Investigators
Principal Investigators
Stakeholder Relations Partner Iwi
Associate Investigators
Postdoctoral Researchers
Students
Total
Peer reviewed research outputs by type
Journal articles
Book chapters
Conference papers
Books
Total

22
34
1
50
144
339
590
399
5
16
1
421

Board, executive, staff and students

Governance Representative Board

Professor Richard Blaikie Deputy Vice-Chancellor, Research and Enterprise University of Otago

Mr Will Charles Executive Director, Technology Development, UniServices University of Auckland

Professor Ray Geor Pro Vice-Chancellor College of Sciences Massev University

Mr Paul Linton* General Manager Research and Technical Services, and Commercial Businesses Callaghan Innovation

Mr Joe Manning Head of Department - Materials and Air GNS Science

Professor Ehsan Mesbahi Pro Vice-Chancellor Wellington Faculties of Science, Health, Engineering, Architecture and Design Innovation (SHEADI) Victoria University of Wellington

Mr Hēmi Rolleston Chair of the Board General Manager Te Ao Māori and Science Services Scion

Professor Ian Wright Deputy Vice-Chancellor Research and Innovation University of Canterbury

Ex-Officio

Professor Nicola Gaston Co-Director, MacDiarmid Institute University of Auckland

Professor Justin Hodgkiss Co-Director, MacDiarmid Institute Victoria University of Wellington

Associate Professor Pauline Harris Deputy Director Māori/Māori Research Representative/Research Programme Leader: Mātauranga Māori Victoria University of Wellington/ Massey University

Professor Paul Kruger Deputy Director Stakeholder Engagement, MacDiarmid Institute University of Canterbury

Associate Professor Geoff Willmott Deputy Director Commercialisation and Industry Engagement, MacDiarmid Institute University of Auckland

Associate Professor Anna Garden Science Executive Representative, MacDiarmid Institute University of Otago

International Science Advisory Board

Professor Sir Richard Friend Cavendish Professor of Physics University of Cambridge, United Kingdom Physics of energy materials, condensed matter

Dr Anita Hill Chief Research Scientist, Future Industries Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia Porous materials

Professor Wilhelm Huck Professor of Chemistry, Institute for Molecules and Materials Radboud University, Netherlands Artificial cells

Professor Tomonobu Nakavama Deputy Director, Administrative Director, Group Leader of WPI-MANA Deputy Director of ICYS Professor at the University of Tsukuba National Institute for Materials Science | NIMS International Center for Materials Nanoarchitectonics (MANA) University of Tsukuba, Japan Surface physics and chemistry, nanotechnology, nanobioscience

Professor Daniel Nocera Patterson Rockwood Professor of Energy Harvard University, United States of America Chemistry of renewal energy

Professor Ivan Parkin Dean of Mathematical and Physical Sciences Faculty University College London, United Kingdom Nanomaterials

Professor Annie Powell Professor of Inorganic Chemistry, Institute of Inorganic Chemistry and Institute of Nanotechnology Karlsruhe Institute of Technology, Germany Molecular materials

Dr Charles Roval Independent researcher and consultant New Zealand Mātauranga Māori

Professor Michelle Simmons Director, Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology Laureate Fellow Scientia Professor of Physics University of New South Wales, Australia Quantum computing, condensed matter physics

Professor of Chemistry, University of Queensland Deputy Director and co-founder, Australian Institute for Bioengineering and Nanotechnology University of Queensland, Australia

Nanoscience, nanotechnology, and molecular

Professor Matt Trau

diagnostics

Dr David Williams

Chief Research Scientist and Laboratory Manager, Hitachi Cambridge Laboratory University of Cambridge, United Kingdom Materials for computing

Science Executive

Professor Nicola Gaston Co-Director, MacDiarmid Institute University of Auckland

Professor Justin Hodgkiss Co-Director, MacDiarmid Institute Victoria University of Wellington

Associate Professor Pauline Harris Deputy Director Māori/Māori Research Representative/Research Programme Leader: Mātauranga Māori Victoria University of Wellington/ Massey University

Professor Paul Kruger Deputy Director Stakeholder Engagement, MacDiarmid Institute University of Canterbury

Associate Professor Geoff Willmott Deputy Director Commercialisation and Industry Engagement, MacDiarmid Institute University of Auckland

Shikeale Harris MESA Co-Chair Massey University

Dr Azy Hashemi MESA Co-Chair University of Canterbury

Professor Simon Brown Research Programme Leader: Future Computing University of Canterbury

Dr.Jack Chen Associate Investigator Representative Auckland University of Technology

Dr Laura Domigan Principal Investigator Representative University of Auckland

Associate Professor Anna Garden Principal Investigator Representative University of Otago

Professor Shane Telfer Research Programme Leader: Catalytic Architectures Massey University

Professor Jadranka Travas-Sejdic Research Programme Leader: Reconfigurable Systems University of Auckland

Ex-Officio

Gabrielle Holmes Programme Manager, MacDiarmid Institute Victoria University of Wellington

Kevin Sheehy Commercialisation and Industry Engagement Manager, MacDiarmid Institute Victoria University of Wellington

Rosie Wayte Institute Manager, MacDiarmid Institute Minute-taker Victoria University of Wellington

Vanessa Young Strategic Engagement and Communications Manager, MacDiarmid Institute Victoria University of Wellington

MacDiarmid Emerging Scientist Association (MESA) 2022

Shikeale Harris Co-Chair PhD Student Massey University

Dr Azadeh Hashemi Co-Chair Postdoctoral Fellow University of Canterbury

Brianna Nally Secretary PhD Student University of Otago

Calum Gordon Treasurer PhD Student Victoria University of Wellington

Rosanna Rov Social Media Representative PhD Student University of Auckland

Daniel Mak Commercialisation and Industry Representative PhD Student University of Auckland

Bushra Anam Centre Representative PhD Student University of Canterbury

Lara Browne Centre Representative PhD Student Victoria University of Wellington

Mohsin Jiaz Centre Representative PhD Student University of Otago

Roisin Mooney Centre Representative PhD Student

Ulrich 7uelicke

Auckland University of Technology	lwi (1)
Coorgia Dichardson	Diane Bradshaw
Contro Doprocontativo	
DhD Student	
Viatoria University of Wellington	A and sinte luncestimators (FO)
victoria University of weinington	Associate investigators (50)
Rosanna Rov	Mathew Anker
Centre Representative	Eva Anton**
PhD Student	Baptiste Auguie
University of Auckland	Ebubekir (Ebu) Avci
	David Barker
Sarah Sale	Catherine Bishop
Centre Representative	Margaret Brimble
PhD Student	Philip Brydon
University of Canterbury	Peng Cao
	Jack Chen
Ben Westberry	Kai Chen
Centre Representative	Shen Chong
Postdoctoral Fellow	Martyn Coles
Massey University	Matthew Cowan
	James Crowley
Principal Investigators (34)	Nathaniel Davis
	Renwick Dobson
Martin Allen	Courtney Ennis*
Sally Brooker	Christopher Fitchett
Simon Brown	Robin Fulton
Chris Bumby	Petrik Galvosas
Laura Domigan	Vladimir Golovko
Anna Garden	Prasanth Gupta
Nicola Gaston	Muhammad Hanif
Keith Gordon	Shaun Hendy***
Michele Governale	Patricia Hunt
Simon Granville	Geoff Jameson
Pauline Harris	Marcus Jones
Justin Hodgkiss	Vedran Jovic
Derek Kawiti	Jon Kitchen
John Kennedy	Erin Leitao
Paul Kruger	Jérôme Leveneur
Eric Le Ru	Luke Liu
Nigel Lucas	Taniela Lolohea*
Jenny Malmström	Ben Mallett
Aaron Marshall	Steven Matthews
Duncan McGillivray	KIM MCKEIVEY
Carla Meledandri*	Franck Natali
Volker Nock	Michel Nieuwoudt
Natalie Plank	Emilia Nowak
Ben Ruck	Elke Pani Kanana Didinana
James Storey	Kannan Ridings
Shahe Telfer	VIJI Salojili Iomi Shanhard*
Jadranka Travas-Sejdic	Jaini Shepheru Tilo Sähnol
	Vrista Steenbergen
Cathoring Whithy	Mark Waterland
Creat Williams	Comeron Weber
Grant Williams	Stuart Wimbush**
Cooff Willmott	Ben Vin
Geon willinou	Den fill

* Indicates appointed as AI

** Indicates resigned as AI

*** Indicates change of status from AI to EI

Stakeholder Relations Partner

MI students in 2022

Masters (52)

	Masters (32)	,		FIID (207)		
Maan Alkaisi	Baiju	Sajith	University of Canterbury	Acheson	Chris	Victoria University of Wellington
Penny Brothers	Bui	Phuong	Victoria University of Wellington	Adams	Ryan	University of Canterbury
Ian Brown	Buzas Stowers-	André	Massey University	Agnieray	Heiana	University of Auckland
Bob Buckley	Hull			Aguilar	Clouie Justin (CJ	J) University of Auckland
Sally Davenport	Chan	Sanutep	Victoria University of Wellington	Ahangarpour	Marzieh	University of Auckland
Alison Downard**	Clague	Lily	University of Otago	Ahmmed	Fatema	University of Otago
Simon Hall	Desilva	Karnika	University of Canterbury	Allan	Claudia	University of Canterbury
Shaun Hendy*	Faulkner	Logan	University of Otago	Altenhuber	Nicola	University of Canterbury
Jim Johnston	Ferguson	Alexander	University of Auckland	Ambadivil Soma	n Arva	Victoria University of Wellington
Tim Kemmitt	Fernandez	Irene Marice (Ma	i) Victoria University of Wellington	Anand	Alio	University of Auckland
Ken MacKenzie Andreas Markwitz	Filatov	Yuri	University of Canterbury	Andarini	Rizki Putri (Putri	i) Victoria University of Wellington
Jim Metson	Francois	Jack	University of Auckland	Andrew	Phillinna-Kate	Massey University
Roger Reeves	Gao	Hetian (Henry)	University of Auckland		(Kate)	Massey entrendry
Mike Reid	Girdwood	Megan	University of Canterbury	Appletree	Lun	University of Auckland
Craig Rofe	Grant	Mason	University of Auckland	Ashraf	Jesna	University of Auckland
Califer Simpson Jeff Tallon	На	Stephen	University of Auckland	Auer	Bernhard	Massey University
Richard Tilley	Hackner	Nico	University of Otago	Aved	Zeineb	Victoria University of Wellington
David Williams	Не	Jing	Massey University	Ragus Pambudi	Agung	Victoria University of Wellington
	Kuang	7e	University of Auckland	Randi	Bhanumathi	Auckland University of Technology
*Indicates shift in status from AI to EI	Kumar	Barath	Massey University	Battley	Andrew	University of Auckland
Tindicates retired as Er	Mare	Alaigne (Lenny)	Victoria University of Wellington	Bavat	Afrooz	University of Canterbury
Professional Staff	Maintwre	Sam	University of Otago	Beikzadeh	Sara	University of Auckland
	Mondoza	Shoiro	Victoria University of Wellington	Gheleilou	Sara	University of Adekiand
Genevieve Fitzjames	Menuoza	Alaasa	University of Avelland	Bell-Tyler	Joseph	University of Auckland
Project Coordinator, MacDiarmid Institute	Monoo	Aleece	University of Otage	Bernach	Michal	University of Canterbury
University of Auckland	Moree	Lana	University of Otago	Bhaskar	Subhasree	University of Auckland
Gabrielle Holmes	Nielsen	Benjamin	Victoria University of weinington	Biareborn	Oscar	Victoria University of Wellington
Programme Manager, MacDiarmid Institute	Otter	Sam	Massey University	Board	Amanda	University of Canterbury
Victoria University of Wellington	Pearcy	Aston	University of Otago	Booth	Tony	Pohinson Pesearch Institute
	Plummer	Sam	University of Canterbury	Bror	Novpeet Vour	University of Auckland
Kevin Sneeny Commercialisation and Industry Engagement	Rex	Angelique	Massey University	Diai	Matthew	Victoria University of Wellington
Manager, MacDiarmid Institute	Said	Sultan	Auckland University of Technology	Brooks	Matthew	Victoria University of Wellington
Victoria University of Wellington	Sansom	Gabriela	Massey University	Brooks	Justin (Gus)	Victoria University of Wellington
	Scott	Victoria-Jayne	Massey University	Browne	Lara	Victoria University of weinington
Rosie Wayte	Sheard	William	University of Auckland	Bryant	Devon	
Victoria University of Wellington	Siesicki	Jessica	Victoria University of Wellington	Burling	Sophie	Massey University
	Stephens	Emily	Victoria University of Wellington	Busher		University of Auckland
Vanessa Young	Stone	Madeline (Dana)	University of Canterbury	Carleton	Daniel	Auckland University of Technology
Strategic Engagement and Communications	Summers	Hannah	Victoria University of Wellington	Carlisle	Nicholas	Massey University
Manager, MacDiarmid Institute Victoria University of Wellington	Taylor	Marcus	University of Canterbury	Carroll	Liam	University of Canterbury
	Tong	Marco	University of Auckland	Cassie	Erica	Victoria University of Wellington
	Unsworth	Sophie	Victoria University of Wellington	Chahal	Harpreet Kaur	University of Auckland
	Venkatesh	Siddharth	Massey University	Cheema	Jamal	University of Auckland
	Wallace	Rachel	Victoria University of Wellington	Chen	Qun (Queenie)	University of Auckland
	Wang	Runzhong (Derel	k) University of Auckland	Chen	Xize	University of Auckland
	Ward	Ciaran	University of Otago	Choudhury	Minati	University of Otago
	Watson	Hosea	University of Canterbury	Chourasia	Shivangi	Massey University
	Watt	Carlie	University of Auckland	Christopher	Tim	University of Auckland
	Whiting	John	University of Otago	Chung	Stephen	University of Auckland
	Wiley	Richard	University of Canterbury	Cleland	Josiah	Massey University
	Wong	Emily	Victoria University of Wellington	Clyde	Daniel	University of Auckland
	Xie	Haotian	University of Auckland	Coombes	David	University of Canterbury
	Zhang	Hongliang (Ryan) University of Auckland	Cowlishaw	Isabel	University of Auckland
	Zhang	Zizhong (Victor)	Victoria University of Wellington	Currie	Michael	University of Canterbury
		. ,		Dahalan	Ghadir	Massey University
				Das	Dona	University of Auckland
				Data	Shailja	University of Auckland
				Deas	Robert	University of Auckland
				DeMonte	Kieran	University of Otago
				Devese	Samuel	Victoria University of Wellington
				Dierkes	Marissa	Victoria University of Wellington
				Dong	Yusong	University of Auckland

Emeritus Investigators (22)

PhD (287)

Doran	Conor	University of Auckland
Drummond	Grace	University of Auckland
Earl	Andrew	University of Auckland
Edens	Samuel	University of Canterbury
Elahi	Asrar	University of Otago
Emeny	Chrissy	University of Canterbury
Esmaeili	Fatemeh	University of Auckland
Estiri	Arash	Victoria University of Wellington
Evans	Matthew	Victoria University of Wellington
Fellner	Daniel	University of Auckland
Ford	Kathryn	University of Canterbury
Francis	Tait	University of Otago
Franke	Christine	University of Canterbury
Galli	Edoardo	University of Canterbury
Gearing	Havden	University of Auckland
Genits	Alisha	University of Auckland
Ghosh	Sunandita	University of Auckland
Gilbertson	Fletcher	University of Canterbury
Gito	Donn Adam	University of Auckland
GILO	(Adam)	oniversity of naciana
Glasson	Judith	University of Auckland
Gonzales	Jofferson	Victoria University of Wellington
Gordon	Calum	Victoria University of Wellington
Gordon	Hugo	University of Auckland
Grant	Mason	University of Auckland
Grant-Mackie	Emily	University of Auckland
Green	Lewis	University of Auckland
Gunukula	Venkata	University of Auckland
Guo	Lun	University of Auckland
Haack	Alexander	University of Otago
Hamonnet	Johan	University of Canterbury
Нарре	Erica	Victoria University of Wellington
Hardy	Jake	Victoria University of Wellington
Harper	Aimee	University of Canterbury
Harpreet	Chahal	University of Auckland
Harris	Samuel	University of Otago
Harris	Shikeale	Massey University
Harvey-Reid	Nathan	University of Canterbury
Havali	Ahmed	University of Canterbury
Не	Qishu	University of Otago
Hedley	Gavin	University of Canterbury
Heenan	Alex	University of Canterbury
Hermanspahn	Lily	University of Canterbury
Heywood	Zachary	University of Canterbury
Horrocks	Matthew	University of Auckland
Hou	Caixia	University of Canterbury
Hughson	Fraser	Victoria University of Wellington
Hung	Jenny	University of Auckland
Hunt	Liam	University of Auckland
Hunter	Gray	University of Auckland
Ijaz	Mohsin	University of Otago
Islam	Atif	Victoria University of Wellington
Itumoh	Emeka	University of Auckland
Jangodaz	Elnaz	Massey University
Jena	Kumar (Debaivoti)University of Auckland
Jia	Zong Hao (Bill)	University of Auckland
Jin	Ang (Jin)	University of Canterbury
Joshy	Elma	Victoria University of Wellington
Kahlon	Navjot Kaur	University of Auckland
Kan	Wen-Fa (Regis)	University of Auckland

Kasim	Johanes Kevin	U
Kim	Alex	U
King-Hudson	Te-Rina	U
Koia	Sydnee	U
Kumar	Aditi	V
Kumar	Saawan	U
Lamba	Saurabh	U
Lambie	Stephanie	U
Latif	Qaisar	U
Li	Sheung Yin (Tony)U
Lim	Keemi	U
Lin	Chao Yang	V
	(Sunny)	
Lin	Crystal Yongqi	U
Lin	Rolland	U
Lucarelli	Valentina	U
Luong	Tuan Minh	U
Ма	Chao	U
Mahendra	Anmol	V
Maisuria	Bavinesh	V
Mak	Daniel	U
Makinde	Zainab	U
Malone	Niall	U
Mandal	Ramkrishna	U
Manners	Sarah	U
Mao	Yubing	U
Markwitz	Martin	V
Marone-Hitz	Ombéline	U
Maslin	Thomas	U
Mataira-Cole	Ratu	V
Matich	Olivia	A
Matthewman	Emma	U
Matthews	Brooke	U
Mautner	Ira	U
McArdle	Sophie	U
McIntyre	Finn	U
McIntyre	Sam	U
Mendoza	Shaira	V
Miller	Jackson	V
Mills	Chris	U
Misiiuk	Kirill	U
Mohandas	Nimisha	Ν
Mohd Darbi	Nur Maizura	U
Molloy	Ellen	V
Montoya Mejia	Jessica Rocio	U
Mooney	Roisin	A
Murali	Sai	V
Na	Tae Ung (Tony)	U
Naiya	Mohinder	U
Nally	Brianna	U
Nalumaga	Hellen	V
Narasimhan	Badri Narayanan	U
Nawaz	Tehreema	V
Neiman	Alex	U
Nesbitt	Sam	U
Newton-Vesty	Michael	U
Nguyen	Hong Phan	V
Nieles	(Jenna)	
Nieke	Philipp	U
Nott	Thomas	V

	University of Auckland
	University of Auckland
	University of Canterbury
	University of Canterbury
	Victoria University of Wellington
	University of Auckland
ny)University of Auckland
	University of Auckland
	Victoria University of Wellington
	University of Auckland
	Victoria University of Wellington
	Victoria University of Wellington
	University of Canterbury
	University of Auckland
	University of Auckland
	University of Otago
	University of Canterbury
	University of Auckland
	Victoria University of Wellington
	University of Otago
	University of Canterbury
	Victoria University of Wellington
	Auckland University of Technology
	University of Auckland
	University of Canterbury
	University of Auckland
	University of Canterbury
	University of Canterbury
	University of Otago
	Victoria University of Wellington
	Victoria University of Wellington
	University of Otago
	University of Otago
	Massey University
	University of Auckland
	Victoria University of Wellington
	University of Canterbury
	Auckland University of Technology
	Victoria University of Wellington
	University of Auckland
	University of Auckland
	University of Otago
	Victoria University of Wellington
n	University of Auckland
	Victoria University of Wellington
	University of Canterbury
	University of Canterbury
	University of Canterbury
	Victoria University of Wellington
	University of Auckland
	Victoria University of Wellington

Onal	Souri	University of Canterbury
O'Noil	Alov	Massay University
O'Deiller	Alex	Widssey University
O'Relly	Andrea	victoria University of weilington
Otter	Sam	Victoria University of Wellington
Owens	Adrian	Auckland University of Technology
Palpal-latoc	Dennise	University of Auckland
Pandian	Santhosh Kumar	University of Auckland
Park	Kun Woo	University of Auckland
Park	Luke Hyung-Keur	nUniversity of Auckland
Patel	Hamesh	University of Auckland
Patel	Sahil Dineshbhai	University of Auckland
Patel	Shae	Victoria University of Wellington
Datel	Sneh	University of Auckland
Doulin	Emily	University of Augkland
Paulin	Linny	Manager Husing of Auckland
Petters	Ludwig	Massey University
Porritt	Harrison	University of Auckland
Posa	Luka	University of Auckland
Pot	Catherine	Victoria University of Wellington
Poudel	Pitambar	University of Canterbury
Prasad	Shyamal	Victoria University of Wellington
Pu	Yuguang	University of Auckland
Pulickal Joseph	Delsa	University of Auckland
Oicheng	Zhang	University of Auckland
Paghayan	Harikrichnan	University of Canterbury
Daiahakit	Urowadaa	University of Augkland
Rajcilakit	Grahilmunan	
Ramamirtnam	Sasnikumar	Massey University
Randall	George	University of Auckland
Rees	Shaun	University of Auckland
Rehan	Muhammad	Massey University
Ren	Zhijun	Auckland University of Technology
Richardson	Georgia	Victoria University of Wellington
Robb	Matthew	University of Otago
Rosli	Zulfitri (Fitri)	University of Auckland
Rov	Rosanna	University of Auckland
Safaei	Sina	University of Auckland
Sale	Sarah	University of Canterbury
Sansom	Cabriela	Massey University
Sarkar	Debolina	University of Conterbury
Saikai	Mion Malahdaam	University of Otage
Sarwar		University of Otago
Schuurman	Joel Chris	University of Canterbury
Scott	Jacob	Massey University
Sen	Anindita	Victoria University of Wellington
Shaib	Ali	Victoria University of Wellington
Shepperson	Oscar	University of Auckland
Shiraz	Fathumma Rizana	aUniversity of Auckland
Siamaki	Mohammad	Victoria University of Wellington
Singh	Varinder	University of Otago
Siu	Christy	University of Auckland
Smith	Caitlin	University of Auckland
Smith	George	Victoria University of Wellington
Smith	Mark	University of Auckland
Smith	Nicholas	University of Otago
Somer	Aruo	Viotorio University of Wellington
Some	Nin	University of Assolution
song	AIII	University of Auckland
Spasovski		University of Auckland
	Martin	University of Adekiand
Steel	Martin Jamie	University of Canterbury
Steel Steinmetz	Martin Jamie Kai	University of Auckland University of Auckland
Steel Steinmetz Stevenson	Martin Jamie Kai Sarah	University of Auckland University of Canterbury University of Auckland Victoria University of Wellington
Steel Steinmetz Stevenson Studholme	Martin Jamie Kai Sarah Sofie	University of Auckland University of Canterbury University of Auckland Victoria University of Wellington University of Canterbury

Sun Sweet Tan Tang Taylor Thomas Thompson Tiban Anrango Titheridge Tong Treacher Van Hilst Vas Vella Vincent Vyborna Wagner Wan Wang Wang Wang Wang Wang Warren Watkin Watts Webb Westberry Williamson Wislang Wong Wong Wood Wu Xu Yang Yang Yang Yang Young Yu Yudhipratama Zakaria Zemke-Smith Zhang Zhang Zhang Zhang Zhoiu Zhu Zhurenkov

Xin Tylah Shi Min Da Ross Dion Kadin Bryan Andres Laura Juliana Eddyn Quinn Marco Joe Emma Natalija Isabella Ziyao Jie Tony Yuxin (Sunny) Zhuoyue (Joy) Zifei (Linna) Aran Serena Benjamin Joshua Benjamin Joey Kate Peter David Jiazun Kristen Hui Kourtney Mingrui (Ray) Tingxuan Eilidh Indra Amir (Winter) Chase Aicheng Ethan Wen Yiming Huihua Yufei Kirill

University of Auckland Victoria University of Wellington University of Auckland University of Auckland Victoria University of Wellington Victoria University of Wellington Victoria University of Wellington Auckland University of Technology University of Canterbury University of Auckland Victoria University of Wellington University of Otago University of Auckland University of Auckland University of Auckland University of Auckland Victoria University of Wellington University of Auckland Victoria University of Wellington University of Auckland University of Auckland University of Canterbury University of Auckland University of Canterbury University of Canterbury Victoria University of Wellington University of Auckland Massey University Victoria University of Wellington University of Canterbury Chi Hung (Andy) University of Auckland University of Auckland University of Canterbury Victoria University of Wellington University of Auckland University of Auckland University of Auckland Massey University University of Auckland University of Auckland Tiantian (Diana) University of Auckland University of Auckland University of Canterbury Victoria University of Wellington University of Auckland Victoria University of Wellington University of Auckland Massey University University of Auckland University of Otago University of Auckland

MI postdoctoral researchers and research assistants in 2022

Postdoctoral Researchers (86)

Abdollahi	Ayoub	University of Auckland
Acharya	Susant	Victoria University of Wellington
Akbarinejad	Alireza	University of Auckland
Arif	Tanzeel	Victoria University of Wellington
Bennie	Rachel	University of Canterbury
Bonesi	Marco	University of Auckland
Cameron	Alan	University of Auckland
Cavanagh	David	University of Otago
Chalard	Anaïs	University of Auckland
Chan	Andrew	University of Auckland
Chan	Eddie	University of Auckland
Chen	Linda	University of Canterbury
Clarke	Daniel	Victoria University of Wellington
Currie	Michael	University of Canterbury
De Zoysa	Gayan Heruka	University of Auckland
Ding	Xiaobo	University of Auckland
Doyle	Kirsty	Victoria University of Wellington
Furkert	Daniel	University of Auckland
Gai	Sinan	University of Otago
Hashemi	Azadeh (Azy)	University of Canterbury
Haverkate	Natalie	University of Auckland
Hayat	Muhammed	University of Auckland
Holmes-Hewett	William	Victoria University of Wellington
Holtkamp	Hannah	University of Auckland
Horsfall	Aimee	University of Auckland
Hubert	Jonathan	University of Auckland
Hume	Paul	Victoria University of Wellington
Kammermeier	Michael	Victoria University of Wellington
Kavianinia	Iman	University of Auckland
Kerr-Philips	Thomas	University of Auckland
Kihara	Shinji	University of Auckland
Kowalczyk	Renata	University of Auckland
Lambie	Stephanie	University of Auckland
Li	Fan (Freda)	University of Auckland
Liu	Jinlong	University of Auckland
Lowrey	Sam	University of Otago
Maity	Tanmay	Victoria University of Wellington
Mallinson	Joshua	University of Canterbury
Mapley	Joseph	University of Otago
Martinez Gazoni	Rodrigo	University of Canterbury
McDougall	Daniel	University of Auckland
Miller	Jackson	Victoria University of Wellington
Minnee	Thomas	University of Auckland
Nalumaga	Hellen	Victoria University of Wellington
Ng	Michael	GNS Science
Novikova	Nina	University of Auckland
Ogilvie	Olivia	University of Canterbury
Oh	Jake	University of Auckland
Pandullo	Marco	Massey University
Paulin	Emily	University of Auckland
Peng	Lishan	University of Auckland
Prabowo	Sigit	Victoria University of Wellington
Price	Mike	Victoria University of Wellington
Pu	Yuguang	University of Auckland
Quinsaat	Jose	Massey University

Radinger	Hannes
Raudsepp	Allan
Rees	Shaun
Rennison	David
Risos	Alex
Rooney	Jeremy
Rossa	Thais
Ruffman	Charlie
Sharer	Heather
Sharma	Shailendra
Sikorska	Celina
Sun	Yiling
Sun-Waterhouse	Dongxiao
Tayagui	Ayelen
Thompson	Kadin
Thorn	Karen
Tu	Jennifer
Weissert	Lena
Westberry	Benjamin
Wright	Joshua
Wu	Chang
Xu	Sherry
Yang	Sunghyun
Yang	Wuxin
Yick	Samuel
Zhang	Ao
Zhang	Peikai
Zhang	Shengping
Zhang	Wen
Zhang	Yao
Zhu	Bicheng

S	University of Canterbury
	Massey University
	University of Auckland
	University of Auckland
	University of Auckland
r	University of Otago
	University of Auckland
;	University of Auckland
r	University of Canterbury
ıdra	University of Canterbury
	University of Auckland
	University of Canterbury
ao	University of Auckland
	Univesity of Canterbury
	Victoria University of Wellington
	Victoria University of Wellington
er	Massey University
	University of Auckland
nin	Massey University
	University of Canterbury
	University of Canterbury
	University of Auckland
un	University of Auckland
	University of Auckland
l	University of Auckland
	Victoria University of Wellington
	University of Auckland
oing (Allan)	University of Auckland
	University of Auckland
	Victoria University of Wellington
g	University of Auckland

Research Assistants (58)

Andrew	Phillippa-Kate (Kate)	Massey University
Banks	Sophie	Robinson Research Institute
Beikzadeh Ghelejlou	Sara	University of Auckland
Bennington	Michael	University of Otago
Bullock	Catherine	Victoria University of Wellington
Burnett	Brydon	University of Auckland
Butler	Tane	Victoria University of Wellington
Chambers	Eleanor	Victoria University of Wellington
Chen	Qun (Queenie)	University of Auckland
Clarke	Jordan	Victoria University of Wellington
Clifford	Max	Victoria University of Wellington
Cowan	Ryan	University of Auckland
Dissanayake	Shama	University of Auckland
Dixon	Alex	University of Auckland
Durrant	Matthew	University of Canterbury
Ferguson	Alexander	University of Auckland
Girdwood	Megan	Victoria University of Wellington
Hackner	Luc	Victoria University of Wellington
Huata	Ringahora	Whakarewarewa Living Village
Ilina	Aleksandra	Victoria University of Wellington
Itumoh	Emeka	University of Auckland
Khalil	Bushra Anam	University of Canterbury
Limlamthong	Mutjalin (Lin)	Victoria University of Wellington
Makinde	Zainab	University of Auckland
Matthews	Hannah	University of Auckland
McConnell	Fraser	Victoria University of Wellington
McLeod	Oliver	GNS Science
Mendoza	Shaira	Victoria University of Wellington
Mohd Darbi	Nur Maizura	University of Auckland
Monteiro	Jaimy	Victoria University of Wellington
Mou	Alyssa	University of Auckland
Nair	Mohinder	Auckland University of Technology
Nalumaga	Hellen	Victoria University of Wellington
Narasimhan	Badri Narayanan	University of Auckland
Nawaz	Tehreema	Victoria University of Wellington
Park	Luke	University of Auckland
Patel	Krunal	University of Auckland
Phillips	Tiernan	University of Auckland
Pradhan	Susav	Massey University
Rani	Aakanksha	University of Auckland
Reid	Oscar	University of Canterbury
Russell	Maisie	University of Auckland
Sen	Anindita	Victoria University of weilington
Singn	Varinder	University of Otago
Storlow	Allurew	Victoria University of Wellington
Stamley	Blake	Victoria University of Wellington
Stephens	Zhimon (Iong)	Pohimaon Desearch Institute
Juli	Ziliyuali (Jerry)	Victoria University of Wellington
Victor	Ockar	Victoria University of Wellington
Wagner	Isabella	Victoria University of Wellington
Ward	Ciaran	University of Otage
waru Wott	Carlio	University of Auglebrad
wall	Galile	University of Auckland

Weal	Geoffrey	Victoria University of Wellington
Wilson	Eva	Victoria University of Wellington
Woolly	Ethan	Victoria University of Wellington
Zhang	Уао	Victoria University of Wellington
Zhang	Zizhong (Victor)	Victoria University of Wellington

Publications

AUTHORS	TITLE
Nachtigal J., Chong S.V., Williams G.V.M. , Isaeva A., Oeckler O., Haase J. & Guehne R.	125Te NMR study of insulators Bi2Te3 ar
Hoque, S., Gonçales, V.R., Bakthavathsalam, P., Tilley, R.D. & Gooding, J.J.	A calibration-free a microRNA with DN magnetic nanoparti electrodes
Fan, Y., Yu, R., Chen, Y., Sun, Y., Waterhouse, G. I. N. & Xu, Z.	A Capillary Electrop Molecularly Imprin for Selective and Se Histamine in Foods
Steyn, N., Plank, M. J., Binny, R. N., Hendy, S. C., Lustig, A. & Ridings, K.	A COVID-19 vaccina New Zealand
Allan, C., Tayagui, A., Hornung, R., Nock, V. & Meisrimler, CN.	A dual-flow RootCh of bi-directional cal roots
Chen, C., Wang, X., Zhang, Y., Li, X., Gao, H., Waterhouse, G. I. N. , Qiao, X. & Xu, Z.	A molecularly-impr on a TiO2@Ag subs capture and sensitiv in foods
Dang, C., Chen, M., Huang, L., Chu, M., Li, Y., Liu, L. & Cao, X.	A multichannel pho antigravity water tr solar steam generat
Fan, Q., Ma, R., Su, W., Zhu, Q., Luo, Z., Chen, K. , Tang, Y., Lin, F. R., Li, Y., Yan, H., Yang, C., Jen, A. KY. & Ma, W.	A new perspective t polymer acceptors ductility, excellent efficiency approach
Zhu, B., Bryant, D. T., Akbarinejad, A., Travas- Sejdic, J. & Pilkington, L. I.	A novel electrocher sensor for the rapid detection of biothic
Liu, J., Zhu, B., Dong, H., Zhang, Y., Xu, M., Travas-Sejdic, J. & Chang, Z.	A novel electrocher From glassy carbon single-use laser-scr
Akbarinejad, A., Hisey, C. L., Martinez- Calderón, M., Low, J., Bryant, D. T., Zhu, B., Brewster, D., Chan, E. W. C., Ashraf, J., Wan, Z., Artuyants, A., Blenkiron, C., Chamley, L., Barker, D., Williams, D. E. , Evans, C. W., Pilkington, L. I. & Travas-Sejdic, J.	A Novel Electroche Conductive Polyme Capture and Releas Biological Entities
Li, Y., Wang, Q., Wei, S., Chen, K. , Wu, S. & Zhang, L.	A Novel Fluoro-Pyr Accepter-Donor Flu Droplet-Specific Im Superoxide Anion (
Liu, S., Jiang, X., Waterhouse, G. I. N. , Zhang, ZM. & Yu, L.	A novel Z-scheme N QDs/ZnIn2S4 photo interfacial electron visible light-driven hydrogen evolution
Bishop, C. M. , Satet, R. L., Cannon, R. M., Carter, W. C. & Roosen, A. R.	A simple model of f and coarsening wit
Truong, D., Lam, N. Y. S., Kamalov, M., Riisom, M., Jamieson, S. M. F., Harris, P. W. R., Brimble, M. A. , Metzler-Nolte, N. & Hartinger, C. G.	A Solid Support-Ba for the Site-Selectiv Peptides with Orga Moieties
Chen, C., Wang, X., Waterhouse, G. I. N. , Qiao, X. & Xu, Z.	A surface-imprinte scattering sensor fo based on dual semi nanoparticles
Sen, A., Sester, C., Poulsen, H. & Hodgkiss, J. M.	Accounting for Inte Gold Nanoparticles High-Performance
Song, X., Zhang, T., Christopher, T. D., Guo, Y., Huang, S., Liu, Y., Söhnel, T. & Cao, P.	Achieving enhance superior ionic cond electrolytes via a co with pressureless si

Journal covers

Organic & Biomolecular Chemistry

Crass:

Paulin, E.K., Leung, E., Pilkington, L.I. & Barker, D. The enantioselective total syntheses of (+)-7-oxohinokinin,

(+)-7-oxoarcitin, (+)-conicaol B and (-)-isopolygamain Organic & Biomolecular

Chemistry **20**, 4324-4330 (2022)

Kerr-Phillips, T., Damavandi, M., Pilkington, L.I., Whitehead, K.A., Travas-Sejdic, J. & Barker, D.

Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(paraphenylene vinylene) and Poly(para-phenylene ethynylene) on the Polymer's Photoluminescent Properties.

Journal of Materials Chemistry C

Polymers 14, 2767 (2022)

Evans, M. J., Gardiner, M. G., Anker, M. D. & Coles, M. P.

Contain

Extending chain growth beyond $C1 \rightarrow C4$ in CO homologation: aluminyl promoted formation of the [C5O5]5– ligand.

Chemical Communications 58, 5833-5836 (2022)

M., Malmstrom, J., Nock, V., Willmott, G. R. & Garrill, A.

Biomechanical responses of encysted zoospores of the oomycete Achlya bisexualis to hyperosmotic stress are consistent with an ability to turgor regulate

Fungal Genetics and Biology 159, 103676 (2022)

Concession

supercapacitors.

Soft, flexible and self-healable supramolecular conducting polymer-based hydrogel electrodes for flexible

Journal of Materials Chemistry C **10**, 14882–14891 (2022)

McKelvey, K. & Chen, Q.

Editorial Overview: Nanoscale Electrochemistry

Electrochemical Science Advances **2**, e2260004 (2022)

JOURNAL

the bulk of topological 1 Sb2Te3	Zeitschrift fur Anorganische und Allgemeine Chemie 648 , e202200208 (2022)
proach to detecting -modified gold coated les as dispersible	Analytical Methods (2022)
noresis Method Based on ed Solid-Phase Extraction sitive Detection of	Molecules 27, 6987 (2022)
ion model for Aotearoa	Scientific Reports 12 , 2720 (2022)
o enables quantification ium signaling in primary	Frontiers in Plant Science 13 , 1040117 (2022)
nted SERS sensor based ate for the selective e detection of tryptamine	Food Chemistry 394 , 133536 (2022)
othermal rod for nsportation and high-flux on	<i>Journal of Materials Chemistry A</i> 10 , 18116- 18125 (2022)
develop regiorandom ith high active layer evice stability, and high ng 17%	Carbon Energy 5 (2022)
ical conducting polymer selective and sensitive s	Polymer Chemistry 13 , 508-516 (2022)
ical insulin aptasensor: electrodes to disposable, ped graphene electrodes	Bioelectrochemistry 143 , 107995 (2022)
iically Switchable Interface for Controlled of Chemical and	Advanced Materials Interfaces 9 , 2102475 (2022)
zine-Bridged Donor- orescent Probe for Lipid ging in Diverse Cells and eneration	Pharmaceutical Research 39 , 1205-1214 (2022)
H2-MIL-125(Ti)/Ti3C2 atalyst with fast ransfer properties for ntibiotic degradation and	Separation and Purification Technology 294 , 121094 (2022)
lly-faceted grain growth non-linear growth laws	International Journal of Materials Research 96 , 124-134 (2022)
ed Synthetic Strategy Functionalization of ometallic Half-Sandwich	Chemistry - A European Journal 28 , e202104049 (2022)
surface-enhanced Raman histamine detection onductors and Ag	Food Chemistry 369 , 130971 (2022)
action Kinetics between and Aptamers Enables olorimetric Sensors	ACS Applied Materials & Interfaces 14 , 32813- 32822 (2022)
densification and ctivity of garnet doping strategy coupled tering	Journal of the European Ceramic Society 42 , 5023-5028 (2022)

AUTHORS	TITLE	JOURNAL	AUTHORS	TITLE	JOURNAL
Guo, Z., Lin, G., Li, L., Cao, P. , Yuan, Z., Wang, X., Shan, Q. & Li, Z.	Achieving strength-ductility synergy in semi-solid squeeze cast 6TiB2/Al–17Si–4Cu	Journal of Materials Research and Technology 21, 2598-2611 (2022)	Meffan, C., Menges, J., Dolamore, F., Mak, D., Fee, C., Dobson, R. C. J. & Nock, V.	Capillaric field effect transistors	Microsystems and Nanoengineering 8 , 33 (2022)
Adhikari, B. R., Sinha, S., Gordon, K. C. & Das,	composites by heat treatment Amino acids improve aerosolization and	International Journal of Pharmaceutics 621,	Young, A. M., Kral, M. V. & Bishop, C. M.	Carbide formation accompanying internal nitridation of austenitic stainless steel	Materials Characterization 184 , 111662 (2022)
S. C.	chemical stability of potential inhalable amorphous Spray-dried ceftazidime for Pseudomonas aeruginosa lung infection	121799 (2022)	Chen, L., Liu, F., Sui, J., Waterhouse, G. I. N. , Zhang, ZM. & Yu, L.	Carbon doped with binary heteroatoms (N,X–C, where X = P, B, or S) derived from polypyrrole for enhanced electromagnetic	Ceramics International 49 , 4252-4263 (2022)
Limlamthong, M., Jia, X., Jang, E., Jeong, Y., Baik, H., Cowan, M. G. , Choi, J. & Yip, A. C. K.	An anti-humidity palladium-containing MFI composite as a robust ethylene scavenger	Microporous and Mesoporous Materials 341 , 112090 (2022)	Wong P. Waterbourge CIN 9.111 S	wave absorption at microwave frequencies	Trands in Chamistry (2022)
Vattiato, G., Maclaren, O., Lustig, A., Binny, R.	An assessment of the potential impact of the	Infectious Disease Modelling 7, 94-105 (2022)	wang, B., waternouse, G.I.N. & Lu, S.	and expansive future	Trenus in Chemistry (2022)
N., Hendy, S. C. & Plank, M. J.	New Zealand		Cheng, Y., Song, H., Yu, J., Chang, J., Waterhouse, G. I. N., Tang, Z., Yang, B. & Lu, S.	Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and	Chinese Journal of Catalysis 43 , 2443-2452 (2022)
Zhang, C., Li, Q., Wang, T., Miao, Y., Qi, J., Sui, Y., Meng, Q., Wei, F., Zhu, L., Zhang, W. & Cao, P.	An improved bioinspired strategy to construct nitrogen and phosphorus dual-doped network porous carbon with boosted kinetics	Nanoscale 14 , 6339-6348 (2022)	Evans M. I. Anker. M. D. McMullin C. I.	nanoparticles as efficient electrocatalysts for oxygen reduction	Chemical Science 13 4635-4646 (2022)
Cleland . I. D. & Williams, M. A. K.	potassium ion capacitors	Mathematics 10 3235 (2022)	Neale, S. E., Rajabi, N. A. & Coles, M. P.	[Al(NONDipp)(E)]- anions containing Al-E{16} (E{16} = S. Se) multiple bonds	
	Diffusion Driven by Stress Redistribution Events: Consequences of Lévy Flights		Schwamm, R. J. & Coles, M. P.	Catalytic Hydrophosphination of Isocyanates by Molecular Antimony Phosphanides	European Journal of Inorganic Chemistry 2022 , e202200064 (2022)
Rehan, M., Yeo, A. G., Yousuf, M. U. & Avci, E.	Anchoring Mechanism for Capsule Endoscope: Mechanical Design, Fabrication and Experimental Evaluation	Micromachines 13 , 2045 (2022)	Lambie, S., Low, J. L., Gaston, N. & Paulus, B.	Catalytic Potential of Post-Transition Metal Doped Graphene-Based Single-Atom Catalysts for the CO2 Electroreduction Reaction	ChemPhysChem 23, e202200024 (2022)
Sonehara, J., Kammermeier, M., Sato, D., Iizasa, D., Zülicke, U. , Karube, S., Nitta, J. & Kohda, M.	Anisotropic spin dynamics in semiconductor narrow wires from the interplay between spin- orbit interaction and planar magnetic field	Physical Review B 105 , 94434 (2022)	Bhaskar, S., Matthews, S. J. , Jones, M. I. & Baroutian, S.	Catalytic wet oxidation of glucose as a model compound for organic waste using transition metal oxide powders	Journal of Environmental Chemical Engineering 10 , 107198 (2022)
Siddiqui, W. A., Khalid, M., Ashraf, A., Shafiq, I., Parvez, M., Imran, M., Irfan, A., Hanif, M. , Khan, M. U., Sher, F. & Ali, A.	Antibacterial metal complexes of <i>o<!--<br-->i> -sulfamoylbenzoic acid: Synthesis, characterization, and DFT study</i>	Applied Organometallic Chemistry 36 (2022)	Sarkar, S. B., Matthews, S. J. , Jones, M. I. & Baroutian, S.	Catalytic Wet Oxidation of Glucose over Oxidized Transition Metal and Alloy Catalysts	Chemical Engineering and Technology 10 , 107198 (2022)
Wang, Y., Patel, K., Wu, Z. & Sarojini, V.	Anticancer and Antimicrobial Evaluations on Alternative Reading Frame (ARF) Peptides and	Protein and Peptide Letters 29 , 242-253 (2022)	Schwamm, R. J., Kilpatrick, A. F. R. & Coles, M. P.	Catenated (Bi)n (n=2, 3, 4) Complexes with Formally Monovalent Bismuth Centres	Zeitschrift fur Anorganische und Allgemeine Chemie 648 , e202200260 (2022)
Onal, S., Alkaisi, M. M. & Nock, V.	their Derivatives Application of sequential cyclic compression on cancer cells in a flexible microdevice	<i>PLoS ONE</i> 18 , e0279896 (2022)	Liu, J., Xiao, J., Luo, B., Tian, E. & Waterhouse, G. I. N.	Central metal and ligand effects on oxygen electrocatalysis over 3d transition metal single-atom catalysts: A theoretical investigation	Chemical Engineering Journal 427 , 132038 (2022)
Weir, G., Leveneur, J. & Long, N.	Approximate shape factors for soft magnetic composites	Journal of Magnetism and Magnetic Materials 541 , 168557 (2022)	Kang, X., Stephens, E. R., Spector-Watts, B. M., Li, Z., Liu, Y., Liu, L. & Cui, Y.	Challenges and Opportunities for Chiral Covalent Organic Frameworks	Chemical Science 13 , 9811-9832 (2022)
Lo, S., Pilkington, L. I., Barker, D. & Fedrizzi, B.	Attempts to Create Products with Increased Health-Promoting Potential Starting with Pinot Noir Pomace: Investigations on the Process and Its Methods	Foods 11 , 1999 (2022)	Liu, J., Kennedy, J., Marshall, A. , Metson, J. & Taylor, M. P.	Challenges in Green Hydrogen Production with Renewable and Varying Electricity Supply: An Electrochemical Engineering Perspective	Journal of the Electrochemical Society 169 , 114503 (2022)
Abeysekera, G.S., Love, M.J., Manners, S.H., Billington, C. & Dobson, R.C.J.	Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications	Frontiers in Microbiology 13 (2022)	Pradhan, S., Williams, M. A. K. & Hale, T. K.	Changes in the properties of membrane tethers in response to HPIα depletion in MCF7 cells	Biochemical and Biophysical Research Communications 587, 126-130 (2022)
Kurup, H. M., Kvach, M. V., Harjes, S., Barzak, F. M., Jameson, G. B. , Harjes, E. & Filichev, V. V.	Biomechanical responses of encysted zoospores of the oomycete Achlya bisexualis to hyperosmotic stress are consistent with an ability to turgor regulate	Fungal Genetics and Biology 159 , 103676 (2022)	Tasma, Z., Siow, A., Harris, P. W. R., Brimble, M. A. , Hay, D. L. & Walker, C. S.	Characterisation of agonist signalling profiles and agonist-dependent antagonism at PACAP- responsive receptors: Implications for drug discovery	British Journal of Pharmacology 179 , 435-453 (2022)
Kobayashi, S., Bhattacharya, A., Timm, C. & Brydon, P. M. R.	Bogoliubov Fermi surfaces from pairing of emergent j= 32 fermions on the pyrochlore	<i>Physical Review B</i> 105 , 134507 (2022)	Philippi, F., Goloviznina, K., Gong, Z., Gehrke, S., Kirchner, B., Pádua, A. A. H. & Hunt, P. A.	Charge transfer and polarisability in ionic liquids: A case study	Physical Chemistry Chemical Physics 24 , 3144- 3162 (2022)
Carstens, N., Adejube, B., Strunskus, T., Faupel, F Brown S & Vahl A	Brain-like critical dynamics and long-range	Nanoscale Advances 4 , 3149-3160 (2022)	Lambie, S., Steenbergen, K. G., Gaston, N. & Paulus, B.	Clustering of metal dopants in defect sites of graphene-based materials	Physical Chemistry Chemical Physics 24 , 98-111 (2022)
F., Brown, S. & Vani, A. temporal correlations in percolating networks of silver nanoparticles and functionality preservation after integration of insulating matrix		Ahmed, S., Murmu, P.P., Sathish, C.I., Guan, X., Geng, R., Bao, N., Liu, R., Kennedy, J. , Ding, J., Peng, M., Vinu, A. & Yi, J.	Co- and Nd-Codoping-Induced High Magnetization in Layered MoS2 Crystals	Physica Status Solidi - Rapid Research Letters (2022)	
Tanghe, I., Butkus, J., Chen, K. , Tamming, R. R., Singh, S., Ussembayev, Y., Neyts, K., van Thourhout, D., Hodgkiss, J. M. & Geiregat, P.	Broadband Optical Phase Modulation by Colloidal CdSe Quantum Wells	Nano Letters 22 , 58-64 (2022)	Zhang, Y., Prabakar, S. & Le Ru, E. C.	Coadsorbed Species with Halide Ligands on Silver Nanoparticles with Different Binding Affinities	Journal of Physical Chemistry C 126 , 8692-8702 (2022)
Riva, G.V.D., Hendy, S. , Ross, K. & Sporle, A.	Building sustainable health data capability in Aotearoa New Zealand: opportunities and challenges highlighted through COVID-19	Journal of the Royal Society of New Zealand (2022)	Wu, Y., Song, W., Wimbush, S. C. , Fang, J., Badcock, R. A., Long, N. J. & Jiang, Z.	Combined Impact of Asymmetric Critical Current and Flux Diverters on AC Loss of a 6.5 MVA/25 kV HTS Traction Transformer	IEEE Transactions on Transportation Electrification 9 , 1590-1604 (2022)
Chang, Q., Li, C., Sui, J., Waterhouse, G. I. N. , Zhang, ZM. & Yu, L.	Cage-like eggshell membrane-derived Co- CoxSy-Ni/N,S-codoped carbon composites for electromagnetic wave absorption	Chemical Engineering Journal 430 , 132650 (2022)	Majić, M. R. A., Auguié, B. & Le Ru, E. C.	Comparison of dynamic corrections to the quasistatic polarizability and optical properties of small spheroidal particles	Journal of Chemical Physics 156 , 104110 (2022)

AUTHORS	TITLE	JOURNAL	AUTHORS	TITLE	JOURNAL
Salleh, N., Goh, K. K. T., Waterland, M. R. , Huffman, L. M., Weeks, M. & Matia-Merino, L.	Complexation of Anthocyanin-Bound Blackcurrant Pectin and Whey Protein: Effect of pH and Heat Treatment	Molecules 27, 4202 (2022)	Rice, J. H. P., Geng, J., Bumby, C. W. , Weijers, H. W., Wray, S., Zhang, H., Schoofs, F. & Badcock, R. A.	Design of a 60 kA Flux Pump for Fusion Toroidal Field Coils	IEEE Transactions on Applied Superconductivity 32 (2022)
Lambie, S., Steenbergen, K. G. & Gaston, N.	Concentration dependent alloying behaviour of liquid GaAu	Chemical Communications 58 , 13771-13774 (2022)	Siamaki, M., Storey, J. G. , Wiesehoefer, L. & Badcock, R. A.	Design, Build, and Evaluation of an AC Loss Measurement Rig for High-Speed Superconducting Bearings	Energies 15 , 1427 (2022)
Ashraf, J., Lau, S., Akbarinejad, A., Evans, C. W., Williams, D. E., Barker, D. & Travas-Sejdic, J.	Conducting Polymer - Infused Electrospun Fibre Mat Modified by POEGMA Brushes as Antifouling Biointerface	Biosensors 12 , 1143 (2022)	Lacalendola, N., Tayagui, A., Ting, M., Malmström, J., Nock, V., Willmott, G. R. & Garrill A	Design, Synthesis, and Evaluation of a Cross-Linked Oligonucleotide as the First Nanonlar Inhibitor of APOBEC3A	Biochemistry 61 , 2568-2578 (2022)
Ashraf, J., Akbarinejad, A., Hisey, C. L., Bryant, D. T., Wang, J., Zhu, B., Evans, C. W., Williams, D. E. , Chamley, L. W., Barker, D. , Pilkington, L. I. & Travas-Sejdic, J.	Conducting Polymer-Coated Carbon Cloth Captures and Releases Extracellular Vesicles by a Rapid and Controlled Redox Process	ACS Applied Materials & Interfaces 14 , 32880–32889 (2022)	Novikova, N. I., Matthews, H., Williams, I., Sewell, M. A., Nieuwoudt, M. K., Simpson, M C. & Broderick, N. G. R.	Detecting Phytoplankton Cell Viability Using NIR Raman Spectroscopy and PCA	ACS Omega 7 , 5962-5971 (2022)
Song, X., Zhang, T., Huang, S., Mi, J., Tollemache, C., Travas-Sejdic, J. , Turner, A. P., Gao, W. & Cao, P.	Constructing a Pvdf-Based Composite Solid- State Electrolyte with High Ionic Conductivity Li6.5la3zr1.5ta0.1n0.4o12 for Lithium Metal	SSRN Electronic Journal (2022)	Kihara, S., Chan, A., In, E., Taleb, N., Tollemache, C., Yick, S. & McGillivray, D. J.	Detecting polystyrene nanoplastics using filter paper-based surface-enhanced Raman spectroscopy	RSC Advances 12 , 20519-20522 (2022)
Wang, S., Wei, G., Xie, Y., Shang, H., Chen, Z., Wang, H., Yang, H., Waterhouse, G. I. N. & Wang, X.	Constructing nanotraps in covalent organic framework for uranium sequestration	Separation and Purification Technology 303 , 122256 (2022)	Garagoda Arachchige, P. S., Hughes, J. L., Bell, L. S., Gordon, K. C. & Fraser-Miller, S. J.	Detection of structural degradation of porcine bone in different marine environments with Raman spectroscopy combined with chemometrics	Journal of Raman Spectroscopy 53 , 82-94 (2022)
Liu, S., Jiang, X., Waterhouse, G. I. N. , Zhang, ZM. & Yu, L.	Construction of Z-scheme Titanium-MOF/ plasmonic silver nanoparticle/NiFe layered double hydroxide photocatalysts with enhanced dye and antibiotic degradation	Separation and Purification Technology 278 , 119525 (2022)	Martin-Treceno, S., Allanore, A., Bishop, C. M. Watson, M. J. & Marshall, A. T.	Determination of the Partial Contributions to the Electrical Conductivity of TiO2- SiO2-Al2O3-MgO-CaO Slags: Role of the Experimental Processing Conditions	Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 53 , 798-806 (2022)
Haverkamp, R. G., Wallwork, K. S., Waterland,	activity under visible light Controlled Hydrolysis of TiO2from HCl	Industrial and Engineering Chemistry	Rehan, M., Al-Bahadly, I., Thomas, D. G. & Avci E.	, Development of a Robotic Capsule for in vivo Sampling of Gut Microbiota	IEEE Robotics and Automation Letters 7 , 9517- 9524 (2022)
M. R., Gu, Q. & Kimpton, J. A. Evans, A. M., Collins, K. A., Xun, S., Allen, T. G., Jhulki, S., Castano, I., Smith, H. L., Strauss,	Digestion Liquors of Ilmenite Controlled n-Doping of Naphthalene-Diimide- Based 2D Polymers	Research 61 , 6333-6342 (2022) Advanced Materials 34 , 2101932 (2022)	Jovic, V., Sullivan, M., Keßler, P., Gupta, P., Fiedler, H., Spencer, S., Moser, S., Marshall, A. T. & Kennedy, J. V.	Dimensionally stable anodes for the oxygen evolution reaction: Ruthenium dioxide on a nickel metal substrate	International Journal of Hydrogen Energy 47 , 33374-33381 (2022)
M. J., Oanta, A. K., Liu, L. , Sun, L., Reid, O. G., Sini, G., Puggioni, D., Rondinelli, J. M., Rajh,			Haverkate, N. A., Leung, E., Pilkington, L. I. & Barker, D.	Disruption of Crystal Packing in Thieno[2,3-b] pyridines Improves Anti-Proliferative Activity	Molecules 27 , 836 (2022)
E., Li, H., Barlow, S., Rumbles, G., Brédas, JL., Marder, S. R. & Dichtel, W. R.			Schuyt, J. J. & Williams, G. V. M.	Divalent and trivalent neodymium photoluminescence in NaMgF3:Nd	Journal of Luminescence 247 , 118867 (2022)
Egerton, S., Sim, C., Park, H. E., Staiger, M. P., Patil, K. M. & Cowan, M. G.	Controlling coefficients of thermal expansion in thermoplastic materials: effects of zinc cyanide and ionic liquid	Materials Advances 3 , 4155–4158 (2022)	Ahmed, S., Cui, X. Y., Murmu, P. P., Ding, X., Chu, X. Z., Sathish, C. I., Bao, N. N., Liu, R., Zhao, W. Y., Kennedy, J. , Tan, T., Peng, M.,	Doping and defect engineering induced extremely high magnetization and large coercivity in Co doped MoTe2	Journal of Alloys and Compounds 918 , 165750 (2022)
Hao, M., Chen, Z., Liu, X., Liu, X., Zhang, J., Yang, H., Waterhouse, G. I. N. , Wang, X. & Ma,	Converging Cooperative Functions into the Nanospace of Covalent Organic Frameworks	CCS Chemistry 4 , 2294-2307 (2022)	Wang, L., Ding, J., Wu, T., Wang, X. L., Li, S., Vinu, A., Ringer, S. R. & Yi, J. B.		
5. 	Seawater		Abdollani, A., Wells, F.S., Sendan, A.M., Hewen J.N., Sellier, M. & Willmott, G.R.	onset of drying	Collolas and Surfaces A: Physicochemical and Engineering Aspects 653 , 129983 (2022)
Wasa, A., Aitken, J., Jun, H., Bishop, C. , Krumdieck, S., Godsoe, W. & Heinemann, J. A.	Copper and nanostructured anatase rutile and carbon coatings induce adaptive antibiotic	AMB Express 12 , 117 (2022)	Ai, L., Liu, H., Liu, R., Song, H., Song, Z., Nie, M., Waterhouse, G. I. N. & Lu, S.	Dual sensitivity of spiropyran-functionalized carbon dots for full color conversions	Science China Chemistry 65 , 2274-2282 (2022)
Cole, S. E., Hawkins, M., Miller, K. A., Allen, M. W. & Cockburn, M.	Correlation between Objective Measures of Sun Exposure and Self-Reported Sun	Photochemistry and Photobiology, 13687 (2022)	Cai, M., Zhang, X., Sun, B., Takagi, H., Waterhouse, G. I. N. & Li, Y.	Durable mechanical properties of unidirectional flax fiber/phenolic composites under hydrothermal aging	Composites Science and Technology 220 , 109264 (2022)
	Protective Behavior and Attitudes in Predominantly Hispanic Youth		Brooke, S. J. & Waterland, M. R.	Edge Modes of MoS2via Indirect Double Resonant Raman Spectroscopy	Journal of Physical Chemistry C 126 , 12592- 12602 (2022)
Ablott, T. A., Webby, R., Jenkinson, D. R., Nikolich, A., Liu, L. , Amer Hamzah, H., Mahon, M. F., Burrows, A. D. & Richardson, C.	Coupling Postsynthetic High-Temperature Oxidative Thermolysis and Thermal Rearrangements in Isoreticular Zinc MOFs	Inorganic Chemistry 61 , 1136-1144 (2022)	Salehitaleghani, S., Maerkl, T., Kowalczyk, P. J., Le Ster, M., Wang, X., Bian, G., Chiang, TC. & Brown, S. A.	Edge States of α -Bismuthene Nanostructures	2D Materials 10 , 15020 (2022)
Mellor, N. G., Graham, E. S. & Unsworth, C. P.	Critical Spatial-Temporal Dynamics and Prominent Shape Collapse of Calcium Waves Observed in Human bNT Astrocytes in Vitro	Frontiers in Physiology 13 , 808730 (2022)	McKelvey, K. & Chen, Q.	Editorial Overview: Nanoscale Electrochemistry	Electrochemical Science Advances 2 (2022)
Abbel, R., Greene, A. F., Quilter, H., Leveneur, J., Risani, R., Barbier, M., West, M., Collet, C., Kirby, N. M. & Sorieul, M.	Crystallization Behavior and Sensing Properties of Bio-Based Conductive Composite Materials	Advanced Engineering Materials 25 , 2200959 (2023)	Panimalar, S., Logambal, S., Thambidurai, R., Inmozhi, C., Uthrakumar, R., Muthukumaran, A., Rasheed, R. A., Gatasheh, M. K., Raja, A., Kennedy, J. & Kaviyarasu, K	Effect of Ag doped MnO2 nanostructures suitable for wastewater treatment and other environmental pollutant applications	Environmental Research 205 , 112560 (2022)
Tarling, M. S., Demurtas, M., Smith, S. A. F., Rooney, J. S., Negrini, M., Viti, C., Petriglieri, J. R. & Gordon, K. C.	Crystallographic orientation mapping of lizardite serpentinite by Raman spectroscopy	European Journal of Mineralogy 34 , 285-300 (2022)	Lee Solano, M., Robinson, S., Allen, M. W. , Reyes-Marcelino, G., Espinoza, D., Beswick, B. Tee D. H. & Ding L. Humphraire, L. Van	Effect of an interactive educational activity using handheld ultraviolet radiation docimeters on sup protection knowledge	Preventive Medicine Reports 25 , 101690 (2022)
Lu, CS., Tsai, HY., Shaya, J., Golovko, V. B. , Wang, SY., Liu, WJ. & Chen, CC.	Degradation of sulfamethoxazole in water by AgNbO3 photocatalyst mediated by persulfate	RSC Advances 12 , 29709-29718 (2022)	Kemenade, C., Dobbinson, S., Smit, A. K. & Cust, A. E.	among Australian primary school students	
Given, F. M., Stanborough, T., Waterland, M. R. & Crittenden, D. L.	DeltaPCA: A statistically robust method for analysing surface-enhanced Raman spectra for quantitative analyte detection	Vibrational Spectroscopy 121 , 103389 (2022)	Han, H., Li, Y., Yang, Z., Liu, M., Cao, P. , Ming, P., Zhang, Y. & Zhang, M.	Effect of dispersion method on microstructure and properties of Ni-P-Al2O3(sol)-PTFE composite coating	International Journal of Modern Physics B 36 , 2240024 (2022)

AUTHORS	TITLE	JOURNAL	AUTHORS	TITLE
Zhang, C., Jiang, X., Lü, Z., Feng, H., Zhang, S., Xu, Y., Hayat, M. D. & Cao, P.	Effect of duplex aging on microstructure and mechanical properties of near-β titanium alloy processed by isothermal multidirectional forging	Transactions of Nonferrous Metals Society of China (English Edition) 32 , 1159-1168 (2022)	Xue, P., Calascibetta, A. M., Chen, K. , Thorn, K. E., Jiang, Y., Shi, J., Jia, B., Li, M., Xin, J., Cai, G., Yang, R., Lu, H., Mattiello, S., Liu, Y., Tang, Z., Ma, W., Lu, X., Meng, Q., Hodgkiss, J. M. ,	Enhancing exciton dif energy disorder in org
Etxabide, A., Akbarinejad, A., Chan, E. W. C., Guerrero, P., de la Caba, K., Travas-Sejdic, J. & Kilmartin, P. A.	Effect of gelatin concentration, ribose and glycerol additions on the electrospinning process and physicochemical properties of gelatin nanofibers	European Polymer Journal 180 , 111597 (2022)	Zhang, S., He, Z., Xu, F., Cheng, Y., Waterhouse, G. I. N., Sun-Waterhouse, D. & Wu, P.	Enhancing the perform glucomannan films the zein-pectin nanopart
Deng, H., Li, L., Feng, J., Qi, J., Wei, F., Meng, Q., Ren, Y., Xiao, B., Xue, X., Yin, Q., Li, Y., Sui, Y., Feng, X., Zhang, W., Cao, P. , Chubenko, E. B. & Bondarenko, V.	Effect of Microstructure and Performance of Nb–Cr–Fe–Ni Quaternary Alloys with the Variation of Niobium Element Content	Transactions of the Indian Institute of Metals 75 , 3111-3118 (2022)	Chen, K. , Fang, H., Zhao, C., Fan, Q., Ding, L., Yan, H. & Ma, W.	Enhancing the photov of chlorobenzene-core acceptors by introduc
Tang, C., Auguié, B. & Le Ru, E. C.	Effect of Molecular Position and Orientation on Adsorbate-Induced Shifts of Plasmon Resonances	Journal of Physical Chemistry C 126 , 10129- 10138 (2022)	Xiang, H., Huang, H., Sun-Waterhouse, D., Hu, X., Li, L., Waterhouse, G. I. N. , Tang, R., Xiong,	interaction Enzymatically synthe as novel calcium-bind
Holleran, I., Masad, E., Wilson, D. J., Malmström, J. , Holleran, G. & Alrashydah, E.	Effect of reactive ethylene terpolymer modification on bitumen's microstructure, rheology, and porous asphalt mix properties	International Journal of Pavement Engineering, 1-21 (2022)	J. & Cui, C. Raudsepp, A., Jameson, G. B. & Williams, M. A. K.	Estimating orientation near vertical, microsp
Steyn, N., Lustig, A., Hendy, S. C. , Binny, R. N. & Plank, M. J.	Effect of vaccination, border testing, and quarantine requirements on the risk of COVID-19 in New Zealand: A modelling study	Infectious Disease Modelling 7, 184-198 (2022)	- Bērziņš, K., Mapley, J. I., Gordon, K. C. & Fraser-Miller, S. J.	central moments and Evaluating Spatially C Anti-Stokes Raman Sp
Kerr-Phillips, T., Damavandi, M., Pilkington, L. I., Whitehead, K. A., Travas-Sejdic, J. & Barker, D.	Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(para- phenylene vinylene) and Poly(para-	Polymers 14 , 2767 (2022)	· ·	for Detecting Subsurfa an Emissive Layer: A I Using a Model Bilayer
Via L Cas D Han E Li V 9 Waterbourse	phenylene ethynylene) on the Polymer's Photoluminescent Properties	Catabasis Latters 152 , 2400, 2412 (2022)	Fisser, M., Huang, X., Moseley, D. A., Bumby, C. & Badcock, R. A.	Evaluation of continu and signal processing detection at cryogenic
G. I. N.	of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran Over a Non-noble CoNCx/ NiFeO Catalyst	Catalysis Letters 152 , 3400-3413 (2022)	Yamaguchi, M., Kobayasi, S., Numata, T., Kamihara, N., Shimda, T., Jikei, M., Muraoka, M., Barnsley, J. E., Fraser-Miller, S. J. & Gordon,	Evaluation of crystalli reinforced poly(ether infrared low frequenc
Liu, S., Jiang, X., Waterhouse, G. I. N. , Zhang, ZM. & Yu, L.	Efficient photoelectrocatalytic degradation of azo-dyes over polypyrrole/titanium oxide/ reduced graphene oxide electrodes under visible light: Performance evaluation and mechanism insights	Chemosphere 288 , 132509 (2022)	Xu, D., Chow, J., Weber, C. C. , Packer, M. A., Baroutian, S. & Shahbaz, K.	Evaluation of deep eu the extraction of fucor Tisochrysis lutea - CO experimental validatio
Leiva, L., Granville, S. , Zhang, Y., Dushenko, S., Shigematsu, E., Ohshima, R., Ando, Y. & Shiraishi, M.	Efficient room-temperature magnetization direction detection by means of the enhanced anomalous Nernst effect in a Weyl ferromagnet	Physical Review Materials 6 , 64201 (2022)	Solanki, P. S., Balabhadra, S., Browne, L. D., Reid, M. F., Davis, N. J. L. K. & Wells, JP. R.	Excitation wavelength photoluminescence a of Yb3+/Er3+ doped β- nanoparticles
Tichter, T. & Marshall, A. T.	Electrochemical characterisation of macroporous electrodes: Recent advances and hidden pitfalls	Current Opinion in Electrochemistry 34 , 101027 (2022)	Lu, X., Yu, J., Cai, J., Zhang, Q., Yang, S., Gu, L., Waterhouse, G. I. N. , Zang, SQ., Yang, B. & Lu, S.	Exclusive nitrate to ar boron-doped carbon o Lewis acid sites
Cabré, M. B., Paiva, A. E., Velický, M., Colavita, P. E. & McKelvey, K.	Electrochemical Detection of Isolated Nanoscale Defects in 2D Transition Metal Dichalcogenides	Journal of Physical Chemistry C 126 , 11636- 11641 (2022)	Degnan, R. M., McTaggart, A. R., Shuey, L. S., Pame, L. J. S., Smith, G. R., Gardiner, D. M., Nock, V. , Soffe, R., Sale, S., Garrill, A., Carroll, B.	Exogenous RNAi inhi of rust fungi to reduce
Greaves, T. L., Dharmadana, D., Yalcin, D., Clarke-Hannaford, J., Christofferson, A. J., Murdoch, B. J., Han, Q., Brown, S. J., Weber, C. C. , Spencer, M. J. S., McConville, C. F.,	Electrochemical Stability of Zinc and Copper Surfaces in Protic Ionic Liquids	Langmuir 38 , 4633-4644 (2022)	J., Mitter, N. & Sawyer, A. Majic, M., Somerville, W. & Le Ru, E. C.	Exploiting billiard the mean path length of li spheroids
Liu, J., Luo, Z., Qian, D., Peng, L., Sun- Waterhouse, D. & Waterhouse, G. I. N.	Electronic Tuning of Core-Shell CoNi Nanoalloy/N-Doped Few-Layer Graphene for Efficient Overen Electrocatalysis in	Journal of Physical Chemistry Letters 13, 6743- 6748 (2022)	Agarwal, P., Nieuwoudt, M. K. , Li, S., Procter, G., Andrews, G. P., Jones, D. S. & Svirskis, D.	Exploiting hydrogen b lidocaine loading and ethylene-co-vinyl ace
	Rechargeable Zinc-Air Batteries		Vasdev, R. A. S., Preston, D., Casey-Stevens, C. A., Martí-Centelles, V., Lusby, P. J., Garden, A.	Exploiting Supramole Control Isomer Distrib
Remoto, P. I. J. G., Bērziņš, K., Fraser-Miller, S. J., Korter, T. M., Rades, T., Rantanen, J. & Gordon, K. C.	Elucidating the Dehydration Mechanism of Nitrofurantoin Monohydrate II Using Low- Frequency Raman Spectroscopy	Crystal Growth and Design 22, 2733-2741 (2022)	L. & Crowley, J. D. 	Symmetry [Pd2L4]4+ Expression, purification
Tan, S. M., Rees, S. W. P., Jelley, R. E., Wang, J., Fedrizzi, B. & Barker, D.	Enantioselective Total Synthesis of (R,R)- Blumenol B and d9-(R.R)-Blumenol B	Molecules 27, 7294 (2022)	Sejdic, J. & Kralicek, A.	vulpeculin
Hayat, M. D., Singh, H., Karumbaiah, K. M., Xu, Y., Wang, XG. & Cao, P.	Enhanced Interfacial Bonding in Copper/ Diamond Composites via Deposition of Nano- copper on Diamond Particles	Journal of The Minerals, Metals & Materials Society 74, 949-953 (2022)	Evans, M. J., Gardiner, M. G., Anker, M. D. & Coles, M. P.	Extending chain grow homologation: alumir of the [C5O5]5- ligand
Miller, J. D., McNulty, J. F., Ruck, B. J. , Khalfioui, M. A., Vézian, S., Suzuki, M., Osawa, H., Kawamura, N. & Trodahl, H. J.	Enhanced Sm spin projection in GdxSm1-x N	Physical Review B 106, 174432 (2022)		

	~		D			
J	U	υ	ĸ	N	A	ь.

iffusion by reducing ganic solar cells	Journal of Materials Chemistry A 10 , 24073- 24083 (2022)
rmance of konjac hrough incorporating ticle-stabilized oregano g emulsions	Food Hydrocolloids 124 , 107222 (2022)
voltaic performance red unfused electron cing S…O noncovalent	Chemical Engineering Journal 446 , 137375 (2022)
esized γ-[Glu](n≥1)-Gln ding peptides to deliver ed bioavailability	Food Chemistry 387 , 132918 (2022)
on of optically trapped, phere dimers using l off-focus imaging	Applied Optics 61 , 607-614 (2022)
Offset Low-Frequency pectroscopy (SOLFARS) face Composition below Proof of Principle Study r System	Molecular Pharmaceutics 19 , 4311-4319 (2022)
uous fiber Bragg grating g method for hotspot ic temperatures	Superconductor Science and Technology 35 , 54005 (2022)
linity in carbon fiber- r ether ketone) by using cy Raman spectroscopy	Journal of Applied Polymer Science 139 , 51677 (2022)
utectic solvents for oxanthin from the alga OSMO-RS screening and ion	Journal of Environmental Chemical Engineering 10 , 108370 (2022)
h dependent and photochromic studies β-KYF4 and β-NaYF4	Optical Materials 132 , 112783 (2022)
mmonia conversion via dots induced surface	Cell Reports Physical Science 3 , 100961 (2022)
ibits infection physiology e symptoms in planta	Molecular Plant Pathology 24 , 191–207 (2022)
eory to calculate the light in refractive	Physical Review A 106 , 13521 (2022)
bonding to enhance l stability in a poly etate carrier matrix	International Journal of Pharmaceutics 621 , 121819 (2022)
ecular Interactions to ibutions in Reduced- Cages	Inorganic Chemistry 62 , 1833-1844 (2022)
ion and characterisation ossum lipocalin	Biochimica et Biophysica Acta - General Subjects 1866 , 130205 (2022)
wth beyond $C1 \rightarrow C4$ in CO nyl promoted formation d	<i>Chemical Communications</i> 58 , 5833-5836 (2022)

AUTHORS	TITLE	JOURNAL	AUTHORS	TITLE	JOURNAL
Ashoka, A., Tamming, R. R., Girija, A. V., Bretscher, H., Verma, S. D., Yang, SD., Lu, CH., Hodgkiss, J. M. , Ritchie, D., Chen, C., Smith, C. G., Schnedermann, C., Price, M. B.,	Extracting quantitative dielectric properties from pump-probe spectroscopy	Nature Communications 13 , 1437 (2022)	Neville, J. C., Lau, M. Y., Söhnel, T. & Sperry, J.	Haber-independent, asymmetric synthesis of the marine alkaloid <i>epi</i> -leptosphaerin from a chitin-derived chiral pool synthon	Organic & Biomolecular Chemistry 20 , 6562- 6565 (2022)
Chen, K. & Rao, A. Khanlari, K., Shi, Q., Li, K., Hu, K., Tan, C., Zhang, W., Cao, P. , Achouri, I. E. & Liu, X.	Fabrication of Ni-Rich 58NiTi and 60NiTi from Elementally Blended Ni and Ti Powders by a Laser Powder Bed Fusion Technique: Their	International Journal of Molecular Sciences 23 , 9495 (2022)	Nuoin, D., Sansom, C. E., Richards, D. J., Lucas, N. T., Garden, A. L. , Saldivia Pérez, P. R., Lord, J. M. & Perry, N. B.	Celmisia viscosa: Absolute Configuration, 2,6-Dideoxyhexopyran-3-ulosides, Conformational Flexibility, and Intraspecific Variation	Journal of Natural Products 85 , 1893-1903 (2022)
Mousavi, H., Yin, Y., Sharma, S. K., Gibson, C. T., Golovko, V. , Andersson, G. G., Shearer, C. J. & Metha, G. F.	Printing, Homogenization and Densification Factors Influencing Catalytic Activity of Size- Specific Triphenylphosphine-Ligated Gold Nanoclusters in the Electrocatalytic Hydrogen	Journal of Physical Chemistry C 126 , 246-260 (2022)	Ge, Y., Waterhouse, G. I. N. , Sui, J., Zhang, Z. & Yu, L.	Heterogeneous Co@N-doped carbon/ MoxC@N-doped carbon nanoflowers for efficient electromagnetic wave absorption at microwave frequencies	Synthetic Metals 287 , 117052 (2022)
Allison, M. C., Wurmehl, S., Büchner, B., Vella, J. L., Söhnel, T. , Bräuninger, S. A., Klauss, H -H. Avdeev, M. Marlton, F. P. Schmid, S. &	Evolution Reaction FeMn3Ge2Sn7O16: A Perfectly Isotropic 2-D Kagomé Lattice that Breaks Magnetic Symmetry with Partial Spin Order	Chemistry of Materials 34 , 1369-1375 (2022)	Findlay, J. A., Patil, K. M., Gardiner, M. G., MacDermott-Opeskin, H. I., O'Mara, M. L., Kruger, P. E. & Preston, D.	Heteroleptic Tripalladium(II) Cages	Chemistry - An Asian Journal 17 , e202200093 (2022)
Ling, C. D.			Lisboa, L. S., Preston, D., McAdam, C. J., Wright, L. J., Hartinger, C. G. & Crowley, J. D.	Heterotrimetallic Double Cavity Cages: Syntheses and Selective Guest Binding	Angewandte Chemie - International Edition 61 , e202201700 (2022)
Findlay, J. A., Ross, D. A. W. & Crowley, J. D.	Ferrocene Rotary Switches Featuring 2-Pyridyl-1,2,3-triazole "Click" Chelates	European Journal of Inorganic Chemistry 2022, e202100948 (2022)	Liu, X., Xie, Y., Hao, M., Chen, Z., Yang, H., Waterhouse, G. I. N. , Ma, S. & Wang, X.	Highly Efficient Electrocatalytic Uranium Extraction from Seawater over an Amidoxime-	Advanced Science 9 , 2201735 (2022)
Zhang, Y., Mao, S., Jiang, C., Tian, B., Luo, C., Lin, H., Travas-Sejdic, J. , Peng, H. & Duan, CG.	Ferroelectric polarization assisted organic artificial synapse with enhanced performance	Organic Electronics 109 , 106618 (2022)	Kolathodi, M. S., Akbarinejad, A., Tollemache, C., Zhang, P. & Travas-Seidic, J.	Functionalized In–N–C Catalyst Highly stretchable and flexible supercapacitors based on electrospun	Journal of Materials Chemistry A 10 , 21124- 21134 (2022)
Landaeta, J. F., Khanenko, P., Cavanagh, D. C., Geibel, C., Khim, S., Mishra, S., Sheikin, I., Brydon, P. M. R. , Agterberg, D. F., Brando, M. & Hassinger, E.	Field-Angle Dependence Reveals Odd-Parity Superconductivity in CeRh2As2	Physical Review X 12 , 31001 (2022)	García Doménech, N., Purcell-Milton, F., Sanz Arjona, A., Casasín García, ML., Ward, M.,	PEDOT:SSEBS electrodes High-Performance Boron Nitride Based Membranes for Water Purification	Nanomaterials 12 , 473 (2022)
Jelley, R. E., Lee, A. J., Zujovic, Z., Villas-Boas, S. G., Barker, D. & Fedrizzi, B.	First use of grape waste-derived building blocks to yield antimicrobial materials	Food Chemistry 370 , 131025 (2022)	P. & Gun'ko, Y. K.	Hollow polymerolo/Ni/DVDE microspheros for	Inumal of Materials Science =7, 7570, 7594
Kowalczyk, PJ, Krukowski, P., Kowalczyk, D.A., Pabianek, K., Lutsyk, I., Rogala, M., Dabrowski, P. Bucickiowicz, A. Bickorski, M. Kozłowski	Flexible photovoltaic cells based on two- dimensional materials and their hybrids	Przeglad Elektrotechniczny 98 , 117-120 (2022)	Liu, F., Sui, J., Waterhouse, G. I. N. , Zhou, W., Jiang, X., Zhang, Z. & Yu, L.	broadband microwave absorption via a spray phase inversion method	(2022)
G., Ulaiaki, M., Baranowski, J., Brown, S.A. & Bian, G.,	materiałów dwuwymiarowych i ich hybryd]		Board, A. J., Crowther, J. M., Acevedo-Fani, A., Meisrimler, CN., Jameson, G. B. & Dobson, R. C. J.	How plants solubilise seed fats: revisiting oleosin structure and function to inform commercial applications	Biophysical Reviews 4 , 257-266 (2022)
Taylor, R. W., Booth, T., Ainslie, M. D., Weijers, H. W., Badcock, R. A. & Bumby, C. W.	Flux penetration of an HTS coated-conductor tape by an approaching permanent magnet	Superconductivity 4 , 100026 (2022)	Osterrieth, J. W. M., Rampersad, J., Madden, D., Rampal, N., Skoric, L., Connolly, B., Allendorf, M. D., Stavila, V., Spider, J. J., Ameloot, P.	How Reproducible are Surface Areas Calculated from the BET Equation?	Advanced Materials 34 , 2201502 (2022)
Price, M. B., Hume, P. A., Ilina, A., Wagner, I., Tamming, R. R., Thorn, K. E., Jiao, W., Goldingay, A., Conaghan, P. J., Lakhwani, G., Davis, N. J. L. K. , Wang, Y., Xue, P., Lu, H., Chen, K. , Zhan, X. & Hodgkiss, J. M.	Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor	Nature Communications 13 , 2827 (2022)	Marreiros, J., Ania, C., Azevedo, D., Vilarrasa- Garcia, E., Santos, B. F., Bu, XH., Chang, Z., Bunzen, H., Champness, N. R., Griffin, S. L., Chen, B., Lin, RB., Coasne, B., Cohen, S., Moreton, J. C., Colón, Y. J., Chen, L., Clowes, R.,		
Tamming, R. R., Hodgkiss, J. M. & Chen, K.	Frequency domain interferometry for measuring ultrafast refractive index modulation and surface deformation	Advances in Physics: X 7, 2065218 (2022)	Coudert, FX., Cui, Y., Hou, B., D'Alessandro, D. M., Doheny, P. W., Dincă, M., Sun, C., Doonan, C., Huxley, M. T., Evans, J. D., Falcaro, P., Ricco,		
Li, Y., Camps-Arbestain, M., Whitby, C. P. , Wang, T., Mueller, C. W., Hoeschen, C. & Beare, M. H.	Functional complexity explains the depth- dependent response of organic matter to liming at the nanometer scale	Geoderma 408 , 115560 (2022)	R., Farha, O., Idrees, K. B., Islamoglu, T., Feng, P., Yang, H., Forgan, R. S., Bara, D., Furukawa, S., Sanchez, E., Gascon, J., Telalović, S., Ghosh, S. K., Mukherjee, S., Hill, M. R., Sadiq, M. M.,		
Smith, M. J., Dempsey, S. G., Veale, R. W., Duston-Fursman, C. G., Rayner, C. A. F., Javanapong, C., Gerneke, D., Dowling, S. G., Bosque, B. A., Karnik, T., Jerram, M. J., Nagarajan, A., Rajam, R., Jowsey, A., Cutajar, S., Mason, I., Stanley, R. G., Campbell, A., Malmström, J. , Miller, C. H. & May, B. C. H.	Further structural characterization of ovine forestomach matrix and multi-layered extracellular matrix composites for soft tissue repair	Journal of Biomaterials Applications 36 , 996- 1010 (2022)	Horcajada, P., Salcedo-Abraira, P., Kaneko, K., Kukobat, R., Kenvin, J., Keskin, S., Kitagawa, S., Otake, KI., Lively, R. P., DeWitt, S. J. A., Llewellyn, P., Lotsch, B. V., Emmerling, S. T., Pütz, A. M., Martí-Gastaldo, C., Padial, N. M., García-Martínez, J., Linares, N., Maspoch, D., Suárez del Pino, J. A., Moghadam, P., Oktavian R., Morris R. F., Wheatley, P. S.		
Mousavi, H., Small, T. D., Sharma, S. K., Golovko, V. B. , Shearer, C. J. & Metha, G. F.	Graphene Bridge for Photocatalytic Hydrogen Evolution with Gold Nanocluster Co-Catalysts	Nanomaterials 12 , 3638 (2022)	Navarro, J., Petit, C., Danaci, D., Rosseinsky, M. J., Katsoulidis, A. P., Schröder, M., Han, X.,		
Xu, F., Zhang, S., Zhou, T., Waterhouse, G. I. N. , Du, Y., Sun-Waterhouse, D. & Wu, P.	Green approaches for dietary fibre-rich polysaccharide production from the cooking liquid of Adzuki beans: Enzymatic extraction combined with ultrasonic or high-pressure homogenisation	Food Hydrocolloids 130 , 107679 (2022)	Yang, S., Serre, C., Mouchaham, G., Sholl, D. S., Thyagarajan, R., Siderius, D., Snurr, R. Q., Goncalves, R. B., Telfer, S. , Lee, S. J., Ting, V. P., Rowlandson, J. L., Uemura, T., Iiyuka, T., van der Veen, M. A., Rega, D., Van Speybroeck, V. Porge S. M. L. Jamaire, A. Walton, K. S.		
Brar, N. K., Brown, R. T., Shahbaz, K., Hunt, P. A. & Weber, C. C.	Guanidinium solvents with exceptional hydrogen bond donating abilities	<i>Chemical Communications</i> 58 , 3505-3508 (2022)	Bingel, L. W., Wuttke, S., Andreo, J., Yaghi, O., Zhang, B., Yavuz, C. T., Nguyen, T. S., Zamora, F., Montoro, C., Zhou, H., Kirchon, A. & Fairen-		

AUTHORS	TITLE	JOURNAL	AUTHORS	TITLE	JOURNAL
Lisboa, L. S., Riisom, M., Dunne, H. J., Preston, D., Jamieson, S. M. F., Wright, L. J., Hartinger, C. G. & Crowley, J. D.	Hydrazone- and imine-containing [PdPtL4]4+ cages: a comparative study of the stability and host-guest chemistry	Dalton Transactions 51 , 18438-18445 (2022)	Zhao, K., Yin, L., Ma, Z., Yang, T., Tang, H., Cao, P. & Huang, S.	Investigation of the Solid-Solution Limit, Crystal Structure, and Thermal Quenching Mitigation of Sr-Substituted	Inorganic Chemistry 61 , 1627-1635 (2022)
Lloyd, H., Xu, Y. & Cao, P.	Hydrogen Assisted Magnesiothermic Reduction of Y-Doped, Nanocrystalline TiO2	Metals 12, 448 (2022)		Applications	
Narasimhan, B. N., Dixon, A. W., Mansel, B., Taberner, A., Mata, J. & Malmström, J.	Hydrogen bonding dissipating hydrogels: The influence of network structure design on structure–property relationships	Journal of Colloid and Interface Science 630 , 638-653 (2022)	Evans, M. J., Iliffe, G. H., Neale, S. E., McMullin, C. L., Fulton, J. R., Anker, M. D. & Coles, M. P.	Isolating elusive 'Al(μ -O)M' intermediates in CO2 reduction by bimetallic Al-M complexes (M = Zn, Mg)	Chemical Communications 58 , 10091-10094 (2022)
Prabowo, S. W., Longbottom, R. J., Monaghan, B. J., del Puerto, D., Ryan, M. J. & Bumby, C. W.	Hydrogen Reduction of Pre-oxidized New Zealand Titanomagnetite Ironsand in a Fluidized Bed Reactor	The Journal of The Minerals, Metals & Materials Society 74 , 885-898 (2022)	Strickland, N. M., Wimbush, S. C. , Soman, A. A., Kluth, P., Notthoff, C., Knibbe, R., Li, M. & Rupich, M. W.	Isotropic and Anisotropic Flux Pinning Induced by Heavy-Ion Irradiation	IEEE Transactions on Applied Superconductivity 32 (2022)
Xia, J., Gao, D., Han, F., Lv, R., Waterhouse, G. I. N. & Li, Y.	Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran Over a Modified CoAl- Hydrotalcite Catalyst	Frontiers in Chemistry 10 , 907649 (2022)	O'Neil, A. T. & Kitchen, J. A.	Lanthanide-Based Langmuir–Blodgett Multilayers: Multi-Emissive, Temperature- Dependent Thin Films	Chemistry 4 , 1457-1465 (2022)
Arshad, J. Z. & Hanif, M.	Hydroxypyrone derivatives in drug discovery: from chelation therapy to rational design of	<i>RSC Medicinal Chemistry</i> 13 , 1127-1149 (2022)	Hu, J., Zhang, Y., Huo, X., Li, N., Liu, S., Yu, D., Ansermet, JP., Granville, S. & Yu, H.	Large Anomalous Nernst Angle in Co2MnGa Thin Film	<i>IEEE Magnetics Letters</i> 13 , 4503605 (2022)
Twidle, A. M., Barker, D. , Pilkington, L. I., Fedrizzi, B. & Suckling, D. M.	metalloenzyme inhibitors Identification of herbivore-induced plant volatiles from selected Rubus species fed upon by raspberry bud moth (Heterocrossa	Phytochemistry 202 , 113325 (2022)	Yang, H., Liu, Y., Liu, X., Wang, X., Tian, H., Waterhouse, G. I. N., Kruger, P. E., Telfer, S. G. & Ma, S.	Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis	eScience 2 , 227-234 (2022)
Astley, S., Hu, D., Hazeldine, K., Ash, J., Cross,	rubophaga) larvae Identifying chemical and physical changes in wide gap amican ductors using real time and	Faraday Discussions 236 , 191-204 (2022)	Xu, R., Li, R., Yuan, T., Zhu, H., Wang, M., Li, J., Zhang, W. & Cao, P.	Laser powder bed fusion of Al–Mg–Zr alloy: Microstructure, mechanical properties and dynamic precipitation	Materials Science and Engineering A 859 , 144181 (2022)
K., Venturini, F., Grinter, D. C., Ferrer, P., Arrigo, R., Held, G., Williams, G. T. & Evans, D. A.	near ambient-pressure XPS		Albanese, P., Cataldini, S., Ren, C. ZJ., Valletti, N., Brunetti, J., Chen, J. LY. & Rossi, F.	Light-Switchable Membrane Permeability in Giant Unilamellar Vesicles	Pharmaceutics 14 , 2777 (2022)
Wang, H., Ma, C., Sun-Waterhouse, D., Wang, J., Waterhouse, G. I. N. & Kang, W.	Immunoregulatory polysaccharides from Apocynum venetum L. flowers stimulate phagocytosis and cytokine expression via activating the NF-kB/MAPK signaling	Food Science and Human Wellness 11 , 806-814 (2022)	Jamaluddin, A., Chuang, CL., Williams, E. T., Siow, A., Yang, S. H., Harris, P. W. R., Petersen, J. S. S. M., Bower, R. L., Chand, S., Brimble, M. A. , Walker, C. S., Hay, D. L. & Loomes, K. M.	Lipidated Calcitonin Gene-Related Peptide (CGRP) Peptide Antagonists Retain CGRP Receptor Activity and Attenuate CGRP Action In Vivo	Frontiers in Pharmacology 13 , 832589 (2022)
Tong, K. K. H., Riisom, M., Leung, E., Hanif, M., Söhnel, T. , Jamieson, S. M. F. & Hartinger, C. G.	Impact of Coordination Mode and Ferrocene Functionalization on the Anticancer Activity of N-Heterocyclic Carbene Half-Sandwich Complexes	Inorganic Chemistry 61 , 17226-17241 (2022)	Idrus-Saidi, S. A., Tang, J., Lambie, S., Han, J., Mayyas, M., Ghasemian, M. B., Allioux, FM., Cai, S., Koshy, P., Mostaghimi, P., Steenbergen, K. G. , Barnard, A. S., Daeneke, T., Gaston, N. & Kalantar-Zadeh, K.	Liquid metal synthesis solvents for metallic crystals	Science 378 , 1118-1124 (2022)
Zhang, H., Hayat, M. D., Zhang, W., Singh, H., Hu, K. & Cao, P.	Improving an easy-to-debind PEG/PPC/ PMMA-based binder	Polymer 262 , 125465 (2022)	Ling, H., McGillivray, D. J. & Jin, J.	Locking the Spiro Carbon in Spirobisindane Using Sulfur and Phosphorus to Form	<i>Journal of Organic Chemistry</i> 87, 4649-4653 (2022)
Xiang, H., Li, Q., Sun-Waterhouse, D., Li, J., Cui, C. & Waterhouse, G. I. N.	Improving the color and functional properties of seabuckthorn seed protein with phytase treatment combined with alkaline solubilization and isoelectric precipitation	Journal of the Science of Food and Agriculture 102 , 931-939 (2022)	Koskela, J., Sutton, J. J., Lipiäinen, T., Gordon, K. C. , Strachan, C. J. & Fraser-Miller, S. J.	Crystallization in Slurries	Molecular Pharmaceutics 19 , 2316-2326 (2022)
Ge, Y., Waterhouse, G. I. N. , Sui, J., Zhang, Z. & Yu, L.	Improving the electromagnetic wave absorption properties of zinc ferrite- containing N-doped carbon composites by the introduction of Fe4N	Journal of Alloys and Compounds 900 , 163355 (2022)	Bērziņš, K., Fraser-Miller, S. J., Rades, T. & Gordon, K. C.	Low-Frequency Raman Spectroscopy as an Avenue to Determine the Transition Temperature of β- and γ-Relaxation in Pharmaceutical Glasses	Analytical Chemistry 94 , 8241-8248 (2022)
Robb, M.G. & Brooker, S.	Incorporation of Switchable Inorganic Building Blocks into Heterometallic Coordination Polymers	Crystal Growth and Design (2022)	Witzmann, A., Gordon, C. K., Howarth, J., Unsworth, S., Rossi, A., Hardy, J., Price, M. B. & Davis, N. J. L. K.	Luminescent light diffuser for diffuse lighting applications	Luminescence 38 , 47-55 (2022)
Hamonnet, J., Bennington, M. S., Johannessen, B., Hamilton, J., Brooksby, P. A., Brooker, S. ,	Influence of Carbon Support on the Pyrolysis of Cobalt Phthalocyanine for the Efficient	ACS Catalysis 12 , 14571-14581 (2022)	Weir, G., Leveneur, J. & Long, N.	Magnetic susceptibility of soft magnetic composite materials	Journal of Magnetism and Magnetic Materials 551 , 169103 (2022)
Raj Adhikari, B., Sinha, S., Lyons, N., Pletzer, D.,	Inhalable ceftazidime-roflumilast powder	European Journal of Pharmaceutics and	Yīng, Y. & Zülicke, U.	Magnetoelectricity in two-dimensional materials	Advances in Physics: X 7, 2032343 (2022)
Lamont, I., Gordon, K. C. & Das, S. C.	targeting infection and inflammation: Influence of incorporating roflumilast into ceftazidime-leucine co-amorphous	Biopharmaceutics 180 , 260-268 (2022)	Terra, J. C. S., Martins, A. R., Moura, F. C. C., Weber, C. C. & Moores, A.	Making more with less: confinement effects for more sustainable chemical transformations	Green Chemistry 24 , 1404-1438 (2022)
Zhang Y Matthews, S. Wil D & Zou Y	formulation	Surface and Coatings Technology 431 128006	Lacalendola, N. & Willmott, G. R.	Measurement of viscoelastic particle deformation using pipette ion currents	Sensors and Actuators A: Physical 344 , 113698 (2022)
Pradhan, S., Whitby, C. P., Williams, M. A. K.,	impact droplets during plasma spraying Interfacial colloidal assembly guided by	(2022) Journal of Colloid and Interface Science 621 ,	Sarkar, D., Maity, N. C., Shome, G., Varnava, K. G., Sarojini, V. , Vivekanandan, S., Sahoo, N.,	Mechanistic insight into functionally different human islet polypeptide (hIAPP) amyloid:	Physical Chemistry Chemical Physics 24 , 22250-22262 (2022)
Chen, J. L. Y. & Avci, E.	optical tweezers and tuned via surface charge	101-109 (2022)	Kumar, S., Mandal, A. K., Biswas, R. & Bhunia, A.	the intrinsic role of the C-terminal structural motifs	
Harris, S. J., Richardson, C., Mapley, J. I., Wagner, P. & Gordon, K. C.	Investigation of the Geometric and Spectroscopic Properties of Four Twisted Triphenylpyridinium Donor-Acceptor Dyes	Journal of Physical Chemistry A 126 , 5681-5691 (2022)	Peng, L., Yang, J., Yang, Y., Qian, F., Wang, Q., Sun-Waterhouse, D., Shang, L., Zhang, T. & Waterhouse, G. I. N.	Mesopore-Rich Fe–N–C Catalyst with FeN4–O–NC Single-Atom Sites Delivers Remarkable Oxygen Reduction Reaction Performance in Alkaline Media	Advanced Materials 34 , 2202544 (2022)
			Gamberi, T. & Hanif, M.	Metal-Based Complexes in Cancer Treatment	Biomedicines 10 (2022)

AUTHORS	TITLE	JOURNAL	AUTHORS	TITLE	JOURNAL
Mousavi, H., Sharma, S. K., Golovko, V. , Shearer, C. J. & Metha, G. F.	Methanol Tolerant Oxygen Reduction Reaction Electrocatalysis using Size-	ChemNanoMat 8 , e202200122 (2022)	Sharath, R. A., Fang, F., Futter, J., Trompetter, W. J., Singh, G., Vinu, A. & Kennedy, J.	Nitrogen defect engineering in porous g-C3N4 via one-step thermal approach	Emergent Materials (2022)
Chen, C., Sun-Waterhouse, D., Zhao, J., Zhang, Y., Waterhouse, G. I. N. , Lin, L., Zhao, M. & Sun, W	Specific Triphenylphosphine-Ligated Gold Nanoclusters Method for loading liposomes with soybean protein isolate hydrolysate influences the antioxidant efficiency of liposomal systems:	Food Hydrocolloids 129 , 107629 (2022)	Lyzwa, F., Pashkevich, Y. G., Marsik, P., Sirenko, A., Chan, A., Mallett, B. P. P. , Yazdi-Rizi, M., Xu, B., Vicente-Arche, L. M., Vaz, D. C., Herranz, G., Cazayous, M., Hemme, P., Fürsich, K., Minola M. Keimer, B. Bibes, M. & Bernhard, C.	Non-collinear and asymmetric polar moments at back-gated SrTiO3 interfaces	Communications Physics 5 , 133 (2022)
Onal S. Alkaisi. M. M. & Nock. V.	Adding after liposomes formation or before lipid film hydration	iScience 25 , 105518 (2022)	Bérziņš, K., Remoto, P. I. J. G., Fraser-Miller, S. J. & Gordon, K. C.	Nondestructive Spatial Dehydration Analysis of Crystalline Hydrates in Pharmaceutical Solid Dosage Forms Using Spatially Offset	Crystal Growth and Design 22 , 2946-2953 (2022)
	on living cells			Low-Frequency Raman Spectroscopy	
Zhang, P., Zhu, B., Luo, Y. & Travas-Sejdic, J.	Micropipette-Based Fabrication of Free- Standing, Conducting Polymer Bilayer Actuators	Advanced Materials Technologies 7 , 2200686 (2022)	Cavanagh, D. C., Shishidou, T., Weinert, M., Brydon, P. M. R. & Agterberg, D. F.	Nonsymmorphic symmetry and field-driven odd-parity pairing in CeRh2As2	Physical Review B 105 (2022)
Fu, Q., Sun, B., Fan, J., Wang, M., Sun, X., Waterhouse, G. I. N. , Wu, P. & Ai, S.	Mixed matrix of MOF@COF hybrids for enrichment and determination of phenoxy carboxylic acids in water and vergetables	Food Chemistry 371 , 131090 (2022)	S., Plank, N., Ruck, B.J., Joe Trodahl, H. & Holmes-Hewett, W.	layer structures using the intrinsically ferromagnetic semiconductors GdN and DyN	110110 Express 3 (2022)
Raudsepp, A., Williams, M. A. K. & Jameson, G. B.	Modeling multiple duplex DNA attachments in a force-extension experiment	Biophysical Reports 2, 100045 (2022)	Chen, Y., Waterhouse, G. I. N. , Sun, H., Qiao, X., Sun, Y. & Xu, Z.	Novel ratiometric electrochemical sensing platform with dual-functional poly-dopamine and NiS@HCS signal amplification for sunset	Food Chemistry 390 , 133193 (2022)
Wang, P., Li, T., Wu, Q., Du, R., Zhang, Q., Huang, WH., Chen, CL., Fan, Y., Chen, H., Jia, Y., Dai, S., Qiu, Y., Yan, K., Meng, Y., Waterhouse, G. I. N. , Gu, L., Zhao, Y., Zhao,	Molecular Assembled Electrocatalyst for Highly Selective CO2Fixation to C2+Products	ACS Nano 16 , 17021-17032 (2022)	Pervan, M., Marijan, S., Markotić, A., Pilkington, L. I., Haverkate, N. A., Barker, D. , Reynisson, J., Meić, L., Radan, M. & Čikeš Čulić, V.	Novel Thieno [2,3-b]pyridine Anticancer Compound Lowers Cancer Stem Cell Fraction Inducing Shift of Lipid to Glucose Metabolism	International Journal of Molecular Sciences 23 , 11457 (2022)
WW. & Chen, G. Sikorska, C. & Gaston, N.	Molecular crystals vs. superatomic lattice:	Physical Chemistry Chemical Physics 24, 8763-	Sefidan, A. M., Sellier, M., Hewett, J. N., Abdollahi, A., Willmott, G. R. & Becker, S. M.	Numerical model to study the statistics of whole milk spray drying	Powder Technology 411 , 117923 (2022)
	a case study with superalkali-superhalogen compounds	8774 (2022)	Rubin, D., Sansom, C. E., Lucas, N. T. , McAdam, C. J., Simpson, J., Lord, J. M. & Perry, N. B.	O-Acylated Flavones in the Alpine Daisy Celmisia viscosa: Intraspecific Variation	Journal of Natural Products 85 , 1904-1911 (2022)
Roh, DH., Park, JH., Han, HG., Kim, YJ., Motoyoshi, D., Hwang, E., Kim, WH., Mapley, J. I., Gordon, K. C. , Mori, S., Kwon, OH. &	Molecular design strategy for realizing vectorial electron transfer in photoelectrodes	Chem 8 , 1121-1136 (2022)	Kanyan, D., Horacek-Glading, M., Wildervanck, M. J., Söhnel, T. , Ware, D. C. & Brothers, P. J.	O-BODIPYs as fluorescent labels for sugars: glucose, xylose and ribose	Organic Chemistry Frontiers 9 , 720-730 (2022)
Kwon, TH. Singh, V., Abudayyeh, A. M., Robb, M. G. & Brooker, S.	Mono-copper far more active than analogous di-copper complex for electrocatalytic	Dalton Transactions 51 , 4166-4172 (2022)	Lim, K., Hayat, M. D., Jena, K. D., Zhang, W. & Cao, P.	On amine treated polyoxymethylene (POM) blends with low formaldehyde emission for metal injection moulding (MIM)	Journal of Materials Science 57 , 15160-15170 (2022)
Nolan, H., Schröder, C., Brunet-Cabré, M., Pota,	hydrogen evolution MoS2/carbon heterostructured catalysts for	Carbon 202 , 70-80 (2023)	Yang, Z. B., Gao, X. Y., Zhang, C. J., Jiang, X., Feng, H., Zhang, S. Z., Peng, P., Han, J. C., Wang, T. & Cao. P.	On the microstructure evolution and controlling of a 2 vol% TiCp/β-Ti composite during hot deformation	Materials Characterization 190 , 112016 (2022)
F., McEvoy, N., McKelvey, K. , Perova, T. S. & Colavita, P. E.	the hydrogen evolution reaction: N-doping modulation of substrate effects in acid and alkaline electrolytes		Watkin, S. A. J., Bennie, R. Z., Gilkes, J. M., Nock, V. M., Pearce, F. G. & Dobson, R. C. J.	On the utility of microfluidic systems to study protein interactions: advantages, challenges,	European Biophysics Journal (2022)
Bhattacharya, S., Bennet, L., Davidson, J.O. & Unsworth, C.P.	Multi-layer perceptron classification & quantification of neuronal survival in hypoxic- ischemic brain image slices using a novel gradient direction, grey level co-occurrence matrix image training	PLoS ONE 17 (2022)	Faville, S. C., Harris-Hamdscomb, K., Harker, O., Mattison, S., Tamorite, H., Bristowe, J., Daly, D., Ege, R., He, H., Jones, J., McCorkindale, A., Mei, K., Monson, A., Moree, L., Perkovic, F.,	and applications Open Synthesis Network Research in an Undergraduate Laboratory: Development of Benzoxazole Amide Derivatives against Leishmania Parasite	<i>Journal of Chemical Education</i> 99 , 1682-1690 (2022)
Schebarchov, D., Fazel-Najafabadi, A., Le Ru, E. C. & Auguié, B.	Multiple scattering of light in nanoparticle assemblies: User guide for the TERMS program	Journal of Quantitative Spectroscopy and Radiative Transfer 284 , 108131 (2022)	L., Worthington, R., Ennis , C., de la Harpe, S., Brind, T., Hopkins, A., Winefield, K., Hendrickx, S., Caljon, G., Perry, B. & Vernall, A. J		
Qi, JQ., Zhang, CC., Liu, H., Zhu, L., Sui, Y W., Feng, XJ., Wei, WQ., Zhang, H. & Cao, P.	MXene-wrapped ZnCo2S4 core-shell nanospheres via electrostatic self-assembly as positive electrode materials for asymmetric supercapacitors	Rare Metals 41 , 2633-2644 (2022)	Hanifpour, F., Canales, C. P., Fridriksson, E. G., Sveinbjörnsson, A., Tryggvason, T. K., Yang, J., Arthur, C., Jónsdóttir, S., Garden, A. L. , Ólafsson, S., Leósson, K., Árnadóttir, L., Lewin,	Operando quantification of ammonia produced from computationally-derived transition metal nitride electro-catalysts	Journal of Catalysis 413 , 956-967 (2022)
Ridings, K. M. & Hendy, S. C.	Nanowire melting modes during the solid– liquid phase transition: theory and molecular dynamics simulations	Scientific Reports 12 , 20052 (2022)	E., Abghoui, Y., Ingason, Á. S., Magnus, F., Flosadóttir, H. D. & Skúlason, E.	Outiel attention of further latention of	Lumph filter with Chamitan D 40 ,000,1004
Bose, S. K., Mallinson, J. B., Galli, E., Acharya, S.	Neuromorphic behaviour in discontinuous	Nanoscale Horizons 7, 437-445 (2022)	Haghniaz, R. & Travas-Sejdic, J.	circulating tumour cells	(2022)
Chang, Q., Li, C., Sui, J., Waterhouse, G. I. N. , Zhang, ZM. & Yu, L.	Ni/Ni3ZnC0.7 modified alginate-derived carbon composites with porous structures for	Carbon 200 , 166-177 (2022)	Schuyt, J. J., Williams, G. V. M. & Chong, S. V.	Optically reversible $Tm3+ \rightarrow Tm2+$ radiophotoluminescence in NaMgF3:Tm	Optical Materials 133 , 112926 (2022)
Zhao, J., Guo, X., Shi, R., Waterhouse, G. I. N. , Zhang, X., Dai, Q. & Zhang, T.	electromagnetic wave absorption NiFe Nanoalloys Derived from Layered Double Hydroxides for Photothermal Synergistic Reforming of CH4 with CO2	Advanced Functional Materials 32 , 2204056 (2022)	Cavallaro, A., Gordon, K. C. & Das, S. C.	High-dose Spray-dried amorphous composite particles using response surface Method, infrared and low frequency Raman spectroscopy	121446 (2022)
Wang, Z. L., Li, F. F., Quach, R., Ferrarese, A., Forgiarini, A., Ferrari, M., D'Amore, C., Bova, S., Orso, G., Fusi, F., Saponara, S., Hopkins, B.,	Nitrobenzoxadiazole derivatives of the rat selective toxicant norbormide as fluorescent probes for live cell imaging	Bioorganic and Medicinal Chemistry 59 , 116670 (2022)	Olatunji, J. R., Acheson, C., Szmigiel, M., Wimbush, S. C. & Long, N. J.	Orbital and thermal modelling of a 3U CubeSat equipped with a high-temperature superconducting coil	Acta Astronautica 190 , 413-429 (2022)
Brinible, M. A. & Rennison, D.					

AUTHORS	TITLE	JOURNAL	AUTHORS	TITLE	JOURNAL
Bhattacharya, S., Bennet, L., Davidson, J. O. & Unsworth, C. P.	Ordered iterative colour channel selection enhances segmentation of brain slice image neurons of the sham fetal sheep model	Intelligent Systems with Applications 15 , 200104 (2022)	Yang, M., Čufar, M., Pahl, E. & Brand, J.	Polaron-Depleton Transition in the Yrast Excitations of a One-Dimensional Bose Gas with a Mobile Impurity	Condensed Matter 7, 15 (2022)
Ng, L. W. T., Lee, S. W., Chang, D. W., Hodgkiss, J. M. & Vak, D.	Organic Photovoltaics' New Renaissance: Advances Toward Roll-to-Roll Manufacturing	Advanced Materials Technologies 7 , 2101556 (2022)	Kerr-Phillips, T., Schon, B. & Barker, D.	Polymeric Materials and Microfabrication Techniques for Liquid Filtration Membranes	Polymers 14 , 4059 (2022)
Fazel-Najafabadi, A. & Auguié, B.	Orientation dependence of optical activity in	Materials Advances 3 , 1547-1555 (2022)	Gao, D., Han, F., Waterhouse, G.I.N. , Li, Y. & Zhang, L.	Porous nitrogen-doped carbons supporting Fe-porphyrins for the highly efficient catalytic oxidation of HMF to HMFCA	Biomass Conversion and Biorefinery (2022)
	light scattering by nanoparticle clusters		Zeng, X., Liu, Y., Waterhouse, G. I. N., Jiang,	Porous three-dimensional poly(3,4-	Microchemical Journal 177 , 107279 (2022)
Fazel-Najafabadi, A. & Auguié, B.	Orientation-averaged light scattering by nanoparticle clusters: Far-field and near-field benchmarks of numerical cubature methods	Journal of Quantitative Spectroscopy and Radiative Transfer 286 , 108197 (2022)	X., Zhang, Z. & Yu, L.	ethylenedioxythiophene)/K3Fe(CN)6 network as the solid contact layer in high stability Pb2+ ion-selective electrodes	
Tang, J., Lambie, S., Meftahi, N., Christofferson, A. J., Yang, J., Han, J., Rahim, Md. A., Mayyas,	Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals	Nature Synthesis 1 , 158-169 (2022)	Evans, M. J., Neale, S. E., Anker, M. D. , McMullin, C. L. & Coles, M. P.	Potassium Aluminyl Promoted Carbonylation of Ethene	Angewandte Chemie - International Edition 61 , e202117396 (2022)
M., Ghasemian, M. B., Allioux, FM., Cao, Z., Daeneke, T., McConville, C. F., Steenbergen , K. G. , Kaner, R. B., Russo, S. P., Gaston, N. & Kalantar-Zadeh, K.			Plank, M. J., James, A., Lustig, A., Steyn, N., Binny, R. N. & Hendy, S. C.	Potential reduction in transmission of COVID-19 by digital contact tracing systems: a modelling study	Mathematical Medicine and Biology: a Journal of the IMA 39 , 156-168 (2022)
Bhaskar, S., Matthews, S. J. , Jones, M. I. & Baroutian, S.	Oxidised plasma-sprayed transition metal – Reusable supported catalysts for organic waste treatment	Journal of Industrial and Engineering Chemistry 113, 488-501 (2022)	Esmaeili, F., Cassie, E., Nguyen, H. P. T., Plank, N. O. V., Unsworth, C. P. & Wang, A.	Predicting Analyte Concentrations from Electrochemical Aptasensor Signals Using LSTM Recurrent Networks	Bioengineering 9 , 529 (2022)
Thomas, D. G., Galvosas, P. , Tzeng, YC., Harrison, F. G., Berry, M. J., Teal, P. D., Wright,	Oxygen saturation-dependent effects on blood transverse relaxation at low fields	Magnetic Resonance Materials in Physics, Biology and Medicine 35 , 805-815 (2022)	Hughes, E., Binny, R., Hendy, S. & James, A.	Predicting elimination of evolving virus variants	Mathematical Medicine and Biology: a Journal of the IMA 39 , 410-424 (2022)
G. A. & Obruchkov, S. Weir, G., Leveneur, J. & Long, N.	Parametric description of power loss in soft	Journal of Magnetism and Magnetic Materials	Xie, J., Yan, Y., Fan, S., Min, X., Wang, L., You, X., Jia, X., Waterhouse, G. I. N. , Wang, J. & Xu, J.	Prediction Model of Photodegradation for PBAT/PLA Mulch Films: Strategy to Fast Evaluate Service Life	Environmental Science and Technology 56 , 9041-9051 (2022)
Doménech, N. G., Coogan, Á., Purcell-Milton, F., Casasín García, M. L., Arjona, A. S., Cabré,	independent hysteresis loops Partially oxidised boron nitride as a 2D nanomaterial for nanofiltration applications	Nanoscale Advances 4 , 4895-4904 (2022)	Khanlari, K., Shi, Q., Yan, X., Hu, K., Tan, C., Kelly, P., Zhang, W., Cao, P. , Wang, X. & Liu, X.	Printing of NiTinol parts with characteristics respecting the general microstructural, compositional and mechanical requirements of bone replacement implants	Materials Science and Engineering A 839 , 142839 (2022)
M. B., Rafferty, A., McKelvey, K. , Dunne, P. & Gun'ko, Y. K.			Devese, S., Van Koughnet, K., Buckley, R. G. ,	Probing the defect states of LuN1- δ: An	AIP Advances 12 , 35108 (2022)
Mendoza, S., Yin, B. H., Zhang, A. & Bumby , C. W	Pelletization and sintering of New Zealand titanomagnetite ironsand	Advanced Powder Technology 33 , 103837 (2022)	J. & Holmes-Hewett, W. F.	experimental and computational study	
Gordon, C. K., Hogg, R. F., Brett, M. W., Browne, L. D., de Clercq, D. M., Price, M. B. & Davis , N .	Performance Evaluation of Solid State Luminescent Solar Concentrators Based on	Journal of Physical Chemistry C 126 , 19803- 19815 (2022)	Liyu, J., Kim, SW., Söhnel, T. & Sperry, J.	Progress toward a biomimetic synthesis of pegaharmaline A	Organic & Biomolecular Chemistry 20 , 1275- 1283 (2022)
Dela Cruz, Z., Hou, C., Martinez-Gazoni, R. F.,	Organic Luminophores Performance of in situ oxidized platinum/	Applied Physics Letters 120 , 83503 (2022)	Mohandas, N., Kent, L. M., Raudsepp, A., Jameson, G. B. & Williams, M. A. K.	Progress toward Plug-and-Play Polymer Strings for Optical Tweezers Experiments: Concatenation of DNA Using Streptavidin Linkers	ACS Omega 7, 6427-6435 (2022)
Reeves, R. J. & Allen, M. W.	iridium alloy Schottky contacts on (001), (2 $^{\circ}$ 01), and (010) β -Ga2O3		Qiu, X., Garden, A. L. & Fairbanks, A. J.	Protecting group free glycosylation: one-pot	Chemical Science 13 , 4122-4130 (2022)
Li, M., Xu, S., Wu, L., Tang, H., Zhou, B., Xu, J., Yang, Q., Zhou, T., Qiu, Y., Chen, G., Waterhouse, G. I. N. & Yan, K.	Perovskite Cs3Bi2I9Hexagonal Prisms with Ordered Geometry for Enhanced Photocatalytic Hydrogen Evolution	ACS Energy Letters 7, 3370-3377 (2022)		stereocontrolled access to 1,2-trans glycosides and (1→6)-linked disaccharides of 2-acetamido sugars	
Garelja, M. L., Bower, R. L., Brimble, M. A. , Chand, S., Harris, P. W. R., Jamaluddin, M. A., Petersen, J. Siow, A., Walker, C. S. & Hay, D. L.	Pharmacological characterisation of mouse calcitonin and calcitonin receptor-like receptors reveals differences compared with	British Journal of Pharmacology 179 , 416-434 (2022)	Yang, Z., Chen, C., Zhao, Y., Wang, Q., Zhao, J., Waterhouse, G. I. N. , Qin, Y., Shang, L. & Zhang, T.	Pt Single Atoms on CrN Nanoparticles Deliver Outstanding Activity and CO Tolerance in the Hydrogen Oxidation Reaction	Advanced Materials 35 , 2208799 (2022)
Zhang, T., Yang, T., Qu, G., Huang, S., Cao, P. & Gao, W.	human receptors Phase control and stabilization of 1T-MoS2 via black TiO2-x nanotube arrays supporting for electrocatelytic bydrogen evolution	Journal of Energy Chemistry 68 , 71-77 (2022)	Hao, M., Chen, Z., Yang, H., Waterhouse, G. I. N. , Ma, S. & Wang, X.	Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4-	Science Bulletin 67 , 924-932 (2022)
Prabowo, S. W., Longbottom, R. J., Monaghan, B. J., del Puerto, D., Ryan, M. J. & Bumby, C. W.	Phase transformations during fluidized bed reduction of New Zealand titanomagnetite ironsand in hydrogen gas	Powder Technology 398 , 117032 (2022)	Clere, I. K., Ahmmed, F., Remoto, P. I. J. G., Fraser-Miller, S. J., Gordon, K. C. , Komyakova, V. & Allan, B. J. M.	Quantification and characterization of microplastics in commercial fish from southern New Zealand	Marine Pollution Bulletin 184 , 114121 (2022)
Li, Z., Liu, J., Zhao, J., Shi, R., Waterhouse, G.I.N., Wen, XD. & Zhang, T.	Photo-Driven Hydrogen Production from Methanol and Water using Plasmonic Cu Nanoparticles Derived from Layered Double	Advanced Functional Materials (2022)	Horrocks, M. S., Kollmetz, T., O'Reilly, P., Nowak, D. & Malmström, J.	Quantitative analysis of biomolecule release from polystyrene-block-polyethylene oxide thin films	Soft Matter 18, 4513-4526 (2022)
	Hydroxides		Bondì, L., Garden, A. L. , Totti, F., Jerabek, P. & Brooker, S.	Quantitative Assessment of Ligand Substituent Effects on σ - and π -Contributions	Chemistry - A European Journal 28 , e202104314 (2022)
Cornelio, J., Lee, S. J., Zhou, TY., Alkaş, A., Thangavel, K., Pöppl, A. & Telfer, S. G.	Photoinduced Electron Transfer in Multicomponent Truxene-Quinoxaline Metal- Organic Frameworks	Chemistry of Materials 34 , 8437-8445 (2022)		to Fe-N Bonds in Spin Crossover FeII Complexes	
Yang, X., Ai, L., Yu, J., Waterhouse, G. I. N. , Sui, L., Ding, J., Zhang, B., Yong, X. & Lu, S.	Photoluminescence mechanisms of red- emissive carbon dots derived from non- conjugated molecules	Science Bulletin 67 , 1450-1457 (2022)	Wang, Y., Price, M. B., Bobba, R. S., Lu, H., Xue, J., Wang, Y., Li, M., Ilina, A., Hume, P. A., Jia, B., Li, T., Zhang, Y., Davis, N. J. L. K. , Tang, Z., Ma, W., Qiao, Q., Hodgkiss, J. M. & Zhan, X.	Quasi-Homojunction Organic Nonfullerene Photovoltaics Featuring Fundamentals Distinct from Bulk Heterojunctions	Advanced Materials 34 , 2206717 (2022)
			Nalumaga, H., Schuyt, J. J., Breukers, R. D. & Williams, G. V. M.	Radiation-induced changes in the photoluminescence properties of NaMgF3:Yb nanoparticles: Yb3+ → Yb2+ valence conversion and oxygen-impurity charge transfer	Materials Research Bulletin 145 , 111562 (2022)

AUTHORS	TITLE	JOURNAL	,	AUTHORS	TITLE	JOURNAL
Ahmmed, F., Killeen, D. P., Gordon, K. C. & Fraser-Miller, S. J.	Rapid Quantitation of Adulterants in Premium Marine Oils by Raman and IR Spectroscopy: A Data Fusion Approach	Molecules 27 , 4534 (2022)	- I V	Pei, H., Yang, Q., Yu, J., Song, H., Zhao, S., Waterhouse, G. I. N. , Guo, J. & Lu, S.	Self-Supporting Carbon Nanofibers with Ni-Single-Atoms and Uniformly Dispersed Ni-Nanoparticles as Scalable Multifunctional	Small 18 , 2202037 (2022)
Killeen, D. P., Rooney, J. S., Card, A., Hegarty, L. B., Fantham, W. W., Gordon, K. C. & Moran, D.	Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy	Aquaculture Research 53 , 6513-6523 (2022)	-		Batteries	
Richardson, G. M., Howarth, J., Evans, M. J., Edwards, A. J., Cameron, S. A. & Anker, M. D.	Reactivity of a β -diketiminate ytterbium(II) hydride with cyclopentadiene derivatives	Journal of Coordination Chemistry 75 , 1954- 1966 (2022)	(٤	Chen, Y., Waterhouse, G. I. N. , Qiao, X., Sun, Y. & Xu, Z.	Sensitive analytical detection of nitrite using an electrochemical sensor with STAB- functionalized Nb2C@MWCNTs for signal	Food Chemistry 372 , 131356 (2022)
Lu, Q., Cook, J., Zhang, X., Chen, K. Y., Snyder, M., Nguyen, D. T., Reddy, P. V. S., Qin, B., Zhan, S., Zhao, LD., Kowalczyk, P. J., Brown, S. A. , Chiang, TC., Yang, S. A., Chang, TR. & Bian, G.	Realization of unpinned two-dimensional dirac states in antimony atomic layers	Nature Communications 13 , 4603 (2022)	- H N H	Binny, R.N., Priest, P., French, N.P., Parry, M., Lustig, A., Hendy, S.C. , Maclaren, O.J., Ridings, K.M. , Steyn, N., Vattiato, G. & Plank, M.J.	amplification Sensitivity of Reverse Transcription Polymerase Chain Reaction Tests for Severe Acute Respiratory Syndrome Coronavirus 2 Through Time	The Journal of Infectious Diseases 227 , 42979 (2022)
Binny, R. N., Lustig, A., Hendy, S. C. , Maclaren, O. J., Ridings, K. M. , Vattiato, G. & Plank, M. J.	Real-time estimation of the effective reproduction number of SARS-CoV-2 in Aotearoa New Zealand	<i>PeerJ</i> 10 , e14119 (2022)	- 1 7	Bozzola, T., Scalise, M., Larsson, C. U., Newton- Vesty, M. C., Rovegno, C., Mitra, A., Cramer, J., Wahlgren, W. Y., Radhakrishnan Santhakumari	Sialic Acid Derivatives Inhibit SiaT Transporters and Delay Bacterial Growth	ACS Chemical Biology 17 , 1890-1900 (2022)
Ng, M., Jovic, V., Waterhouse, G.I.N. & Kennedy, J.	Recent progress in photothermal catalyst design for methanol production	Emergent Materials (2022)	I I	P., Johnsson, R. E., Schwardt, O., Ernst, B., Friemann, R., Dobson, R. C. J. , Indiveri, C., Schelin, I. Nilsson, I. I. & Ellervik, I.		
Domigan, L. J., Feisst, V. & Ogilvie, O. J.	Recipes for cultured meat	Nature Food 3 , 9-10 (2022)	-			
Wang, X., Wang, W., Liu, J., Qi, J., He, Y., Wang, Y., Hu, W., Cheng, Y., Chen, K. , Hu, Y., Mei, A. & Han, H.	Reducing Optical Reflection Loss for Perovskite Solar Cells Via Printable Mesoporous SiO2 Antireflection Coatings	Advanced Functional Materials 32 , 2203872 (2022)	1	Hancis, I.A., Maynard-Casely, H.E., Cable, M.L., Hodyss, R. & Ennis, C.	Planetary Atmospheres: The C6H6:C2H2 Cocrystal Produced by Gas Deposition	Journal of Physical Chemistry A (2022)
Pacific Early Career Researchers Collective, Allen, J. M. U., Bennett, J. L., Clark, Z. L., Escott, KR., Fa'ayae, D. T. M., Kaulamatoa.	Relational and collective excellence: unfolding the potential of Pacific early career researchers	Journal of the Royal Society of New Zealand 52 , 75-91 (2022)	נ 2 8	Jelley, R. E., Jones-Moore, H., Guan, A., Ren, C. ZJ., Chen, J. LY. , Tonidandel, L., Larcher, R. & Fedrizzi, B.	Simultaneous extraction, derivatisation and analysis of varietal thiols and their non- volatile precursors from beer	<i>LWT</i> 164 , 113563 (2022)
J. L., Kaulamatoa, R., Lolohea, T. , Porter, M., Pulu, V., Tapuke, S., Ualesi, Y., Withers, S. E. & Woolner, V. H.			I V H	Lu, H., Chen, K. , Bobba, R. S., Shi, J., Li, M., Wang, Y., Xue, J., Xue, P., Zheng, X., Thorn, K. E., Wagner, I., Lin, C., Song, Y., Ma, W., Tang, Z., Meng, O., Oiao, O., Hodgkiss, J. M. & Zhan, X.	Simultaneously Enhancing Exciton/Charge Transport in Organic Solar Cells by an Organoboron Additive	Advanced Materials 34 , 2205926 (2022)
Panimalar, S., Subash, M., Chandrasekar, M., Uthrakumar, R., Inmozhi, C., Al-Onazi, W. A., Al-Mohaimeed, A. M., Chen, TW., Kennedy, J., Maaza, M. & Kaviyarasu, K.	Reproducibility and long-term stability of Sn doped MnO2 nanostructures: Practical photocatalytic systems and wastewater treatment applications	Chemosphere 293 , 133646 (2022)		Wu, J., Smith, G. J., Buckley, R. G. , Koo, A. & Williams, G. V. M.	Single layer synthesis of silver nanoparticles with controlled filling fraction and average particle size	Optical Materials 132 , 112761 (2022)
Davies, B., Gush, J., Hendy, S. C. & Jaffe, A. B.	Research funding and collaboration	Research Policy 51 , 104421 (2022)	ſ	Thomas, D. G., Tzeng, YC., Galvosas, P.,	Single-sided Magnet System for Quantitative	IEEE Transactions on Biomedical Engineering
Daniels, R. K., Mallinson, J. B., Heywood, Z. E., Bones, P. J., Arnold, M. D. & Brown, S. A.	Reservoir computing with 3D nanowire networks	Neural Networks 154 , 122-130 (2022)	1 5 -	Harrison, F. G., Berry, M. J., Teal, P. D., Galvin, S. D. & Obruchkov, S. I.	MR Relaxometry and Preclinical <italic>in- vivo</italic> Monitoring	70 , 671-680 (2022)
Seymour, J. M., Gousseva, E., Bennett, R. A., Large, A. I., Held, G., Hein, D., Wartner, G., Quevedo, W., Seidel, R., Kolbeck, C., Clarke, C. J., Fogarty, R. M., Bourne, R. A., Palgrave, R. G.,	Resonant X-ray photoelectron spectroscopy: identification of atomic contributions to valence states	Faraday Discussions 236 , 389-411 (2022)	H H H	Barzak, F. M., Ryan, T. M., Mohammadzadeh, N., Harjes, S., Kvach, M. V., Kurup, H. M., Krause, K. L., Chelico, L., Filichev, V. V., Harjes, E. & Jameson, G. B.	Small-Angle X-ray Scattering (SAXS) Measurements of APOBEC3G Provide Structural Basis for Binding of Single-Stranded DNA and Processivity	Viruses 14 , 1974 (2022)
Hunt, P. A. & Lovelock, K. R. J. Sarkar, S. B., Matthews, S. J., Jones, M. I. & Baroutian, S.	Reusable Plasma-Sprayed Transition Metal Oxide Catalyst for Catalytic Wet Oxidation of Organic Waste	ChemistrySelect 7 , e202201402 (2022)	I	Li, Z., Ren, J., Yang, C., He, Y., Liang, Y., Liu, J., Waterhouse, G. I. N. , Li, J. & Qian, D.	Sodium 5-sulfosalicylate-assisted hydrothermal synthesis of a self-supported Co3S4–Ni3S2@nickel foam electrode for all- solid-state asymmetric supercapacitors	Journal of Alloys and Compounds 889 , 161661 (2022)
Gentner, T. X., Evans, M. J., Kennedy, A. R., Neale, S. E., McMullin, C. L., Coles, M. P. & Mulvey, R. E.	Rubidium and caesium aluminyls: Synthesis, structures and reactivity in C-H bond activation of benzene	<i>Chemical Communications</i> 58 , 1390-1393 (2022)	2	Zhu, B., Chan, E. W. C., Li, S. Y., Sun, X. & Travas-Sejdic, J.	Soft, flexible and self-healable supramolecular conducting polymer-based hydrogel electrodes for flexible supercapacitors	<i>Journal of Materials Chemistry C</i> 10 , 14882- 14891 (2022)
Miller, G.C., Pilkington, L.I., Barker, D. & Deed, R.C.	Saturated Linear Aliphatic $\gamma\text{-}$ and $\delta\text{-}Lactones$ in Wine: A Review	Journal of Agricultural and Food Chemistry 70 , 15325-15346 (2022)	2	Ai, L., Song, Z., Nie, M., Yu, J., Liu, F., Song, H., Zhang, B., Waterhouse, G.I.N. & Lu, S.	Solid-state Fluorescence from Carbon Dots Widely Tunable from Blue to Deep Red through Surface Ligand Modulation	Angewandte Chemie - International Edition (2022)
Hanif, M. , Kosar, N., Mahmood, T., Muhammad, M., Ullah, F., Tahir, M. N., Ribeiro, A. I. & Khan, E.	Schiff Bases Derived from 2-Amino- 6-methylbenzothiazole, 2-Amino-5- chloropyridine and 4-Chlorobenzaldehyde: Structure, Computational Studies and Evaluation of Biological Activity	ChemistrySelect 7 , e202203386 (2022)	- (Gobindlal, K., Zujovic, Z., Jaine, J., Weber, C. C. & Sperry, J.	Solvent-Free, Ambient Temperature and Pressure Destruction of Perfluorosulfonic Acids under Mechanochemical Conditions: Degradation Intermediates and Fluorine Fate	Environmental Science and Technology 57 , 277-285 (2022)
Lucarelli, V., Colbert, D., Li, S., Cumming, M., Linklater, W., Mitchell, J., Travas-Sejdic, J. & Kralicek, A.	Selection and characterization of DNA aptamers for the rat major urinary protein 13 (MUPI3) as selective biorecognition elements	Talanta 240 , 123073 (2022)	I	Pugliese, S. N., Gallaher, J. K., Uddin, M. A., Ryu, H. S., Woo, H. Y. & Hodgkiss, J. M.	Spectroscopic comparison of charge dynamics in fullerene and non-fullerene acceptor-based organic photovoltaic cells	Journal of Materials Chemistry C 10 , 908-920 (2022)
Zhao, J., Shi, R., Waterhouse, G. I. N. & Zhang, T	for sensitive detection of rat pests Selective photothermal CO2 reduction to CO_CH4_alkanes_alkenes over himstallic	Nano Energy 102 , 107650 (2022)	2	Yousuf, M. U., Al-Bahadly, I. & Avci, E.	Statistical wind speed forecasting models for small sample datasets: Problems, Improvements, and prospects	Energy Conversion and Management 261 , 115658 (2022)
	alloy catalysts derived from layered double hydroxide nanosheets			Grant, T. M., Rennison, D., Krause, A. L., Mros, S., Ferguson, S. A., Cook, G. M., Cameron, A., Arabshahi, H. J., Brimble, M. A. . Cahill. P. &	Stereochemical Effects on the Antimicrobial Properties of Tetrasubstituted 2,5-Diketopiperazines	ACS Medicinal Chemistry Letters 13 , 632-640 (2022)
WIIson, B. H., Ward, J. S., Young, D. C., Liu, J., Mathonière, C., Clérac, R. & Kruger, P. E.	Self-Assembly Synthesis of a [2]Catenane CoII Single-Molecule Magnet	Angewandte Chemie - International Edition 61 , e202113837 (2022)	S	Svenson, J.	Staphantia differential equation ensure the	Division D 105 225144 (2022)
Heywood, Z., Mallinson, J., Galli, E., Acharya, S., Bose, S., Arnold, M., Bones, P. & Brown, S.	Self-organized nanoscale networks: are neuromorphic properties conserved in realistic device geometries?	Neuromorphic Computing and Engineering 2 , 24009 (2022)	I	ыани, J., Yang, M. & Pani, E.	understanding the population control bias in full configuration interaction quantum Monte Carlo	rnysicai кeview B 105 , 235144 (2022)

AUTHORS	TITLE	JOURNAL	AUTHORS	TITLE	JOURNAL
Luo, Y., Zhu, B., Zhang, S., Zhang, P., Li, X., Vang, L., Lu, B. & Travas-Sejdic, J.	Stretchable and Flexible Non-Enzymatic Glucose Sensor Based on Poly(ether sulfone)- Derived Laser-Induced Graphene for Wearable Skin Diagnostics	Advanced Materials Technologies 7 , 2101571 (2022)	Wang, Q., Lu, R., Yang, Y., Li, X., Chen, G., Shang, L., Peng, L., Sun-Waterhouse, D., Cowie, B. C. C., Meng, X., Zhao, Y., Zhang, T. & Waterhouse, G. I. N.	Tailoring the microenvironment in Fe–N–C electrocatalysts for optimal oxygen reduction reaction performance	Science Bulletin 67 , 1264-1273 (2022)
Ruffman, C., Lambie, S., Steenbergen, K. G. & Gaston, N.	Structural and electronic changes in Ga–In and Ga–Sn alloys on melting	Physical Chemistry Chemical Physics 25 , 1236–1247 (2022)	Glowacki, J., Sun, Y., Storey, J. G. , Huang, T., Badcock, R. & Jiang, Z.	Temperature Distribution in the Field Coil of a 500-kW HTS AC Homopolar Motor	IEEE Transactions on Applied Superconductivity 32 (2022)
[°] urk, L. S., Currie, M. J., Dobson, R. C. J. & Comoletti, D.	Structure of Reelin repeat 8 and the adjacent C-terminal region	Biophysical Journal 121 , 2526-2537 (2022)	Matthewman, E. L., Kapila, B., Grant, M. L. & Weber, C. C.	The amphiphilic nanostructure of ionic liquids affects the dehydration of alcohols	<i>Chemical Communications</i> 58 , 13572-13575 (2022)
'ang, T., Zhang, T., Huang, S., Christopher, T. D., Gu, Q., Sui, Y. & Cao, P.	Structure tailoring and defect engineering of LED phosphors with enhanced thermal stability and superior quantum efficiency	Chemical Engineering Journal 435 , 133873 (2022)	Biswas, S., Melton, L. D., Nelson, A. R. J., Le Brun, A. P., Heinrich, F., McGillivray, D. J. & Xu, A. Y.	The Assembly Mechanism and Mesoscale Architecture of Protein-Polysaccharide Complexes Formed at the Solid-liquid	Langmuir 38 , 12551-12561 (2022)
Novotny, E. H., de Oliveira-Silva, R., Mattos, B. 3., Rech, I., Galvosas, P. & Bonagamba, T. J.	Study of zeolite anti-caking effects for fertilisers by 1H low-field NMR	Journal of Magnetic Resonance 342 , 107264 (2022)	Maynard-Casely, H. E., Yevstigneyev, N. S.,	The crystal structure, thermal expansion and	Physical Chemistry Chemical Physics 24 , 122-
qbal, S., Siddiqui, W. A., Ashraf, A., Tong, K. K. H., Aman, F., Söhnel, T. , Jamieson, S. M. F., Ianif, M. & Hartinger, C. G.	Substitution of the chlorido ligand for PPh3 in anticancer organoruthenium complexes of sulfonamide-functionalized pyridine- 2-carbothioamides leads to high cytotoxic	Inorganica Chimica Acta 536 , 120889 (2022)	Duyker, S. G. & Ennis, C.	far-IR spectrum of propanal (CH3CH2CHO) determined using powder X-ray diffraction, neutron scattering, periodic DFT and synchrotron techniques	128 (2022)
Etemadi, H., Soltani, T., Yoshida, H., Zhang, Y., Felfer, S. G. , Buchanan, J. K. & Plieger, P. G.	activity Synergistic Effect of Redox Dual PdOx/ MnOxCocatalysts on the Enhanced H2Production Potential of a SnS/a- Fe203Heterojunction via Ethanol	ACS Omega 7, 42347-42358 (2022)	Rashidinejad, A., Jameson, G. B. & Singh, H.	The Effect of pH and Sodium Caseinate on the Aqueous Solubility, Stability, and Crystallinity of Rutin towards Concentrated Colloidally Stable Particles for the Incorporation into Functional Foods	Molecules 27 , 534 (2022)
Park, K. W., Zujovic, Z. & Leitao, E. M.	Photoreforming Synthesis and Characterization of Disiloxane Cross-Linked Polysulfides	Macromolecules 55 , 2280-2289 (2022)	Gao, R., Sun-Waterhouse, D., Xiang, H., Cui, C. & Waterhouse, G. I. N.	The effect of the Corynebacterium glutamicum on the shortening of fermentation time, physicochemical and sensory properties of soy sauce	International Journal of Food Science and Technology 57 , 4316-4327 (2022)
Park, K. W., Tafili, E. A., Fan, F., Zujovic, Z. & Jeitao, E. M.	Synthesis and characterization of polysulfides formed by the inverse vulcanisation of cyclosiloxanes with sulfur	Polymer Chemistry 13 , 4717-4726 (2022)	Law, M., Jarrett, P., Nieuwoudt, M. K ., Holtkamp, H., Giglio, C. & Broadbent, E.	The Effects of Interacting With a Paro Robot After a Stressor in Patients With Psoriasis: A Randomised Pilot Study	Frontiers in Psychology 13 , 871295 (2022)
iow, A., Tasma, Z., Walker, C. S., Brimble, M. A. & Harris, Paul, W. R.	Synthesis and development of seven- membered constrained cyclic urea based	New Journal of Chemistry 46 , 14388-14394 (2022)	Coles, M.P. & Evans, M.J.	The emerging chemistry of the aluminyl anion	Chemical Communications 59 , 503-519 (2022)
Kerr, W. R., Squire, M. A. & Fitchett, C. M.	PSMA inhibitors via RCM Synthesis and structural isomerism of	Journal of Organometallic Chemistry 982 ,	Paulin, E. K., Leung, E., Pilkington, L. I. & Barker, D.	The enantioselective total syntheses of (+)-7-oxohinokinin, (+)-7-oxoarcitin, (+) conicsed R and (-) iconelyzamain	Organic & Biomolecular Chemistry 20 , 4324- 4330 (2022)
	sterically hindered isobornyl amide tethered N-heterocyclic carbene complexes	122519 (2022)	Chen, L., Jameson, G. B. , Guo, Y., Song, J. & Jameson, P. F.	The LONELY GUY gene family: from mosses	Plant Biotechnology Journal 20 , 625-645 (2022)
Hung, K., Kowalczyk, R., Desai, A., Brimble, M. A., Marshall, J. F. & Harris, P. W. R.	Synthesis and Systematic Study on the Effect of Different PEG Units on Stability of PEGylated, Integrin-ανβ6-Specific A20FMDV2 Analogues in Rat Serum and Human Plasma	Molecules 27 , 4331 (2022)	Ilina, A., Thorn, K. E., Hume, P. A., Wagner, I., Tamming, R. R., Sutton, J. J., Gordon, K. C. ,	cytokinins in plants The photoprotection mechanism in the black- brown pigment eumelanin	Proceedings of the National Academy of Sciences of the United States of America 119 ,
Mosaferi, S., Jelley, R. E., Fedrizzi, B. & Barker, D.	Synthesis of d6-deuterated analogues of aroma molecules-β-damascenone, β-damascone and safranal	Results in Chemistry 4 , 100264 (2022)	Andreassend, S. K., Chen, K. & Hodgkiss, J. M 	The potential for hydrogen ironmaking in New Zealand	e2212343119 (2022) Cleaner Chemical Engineering 4 , 100075 (2022)
Maddah, M., Unsworth, C. P. , Gouws, G. J. & Plank, N. O. V.	Synthesis of encapsulated ZnO nanowires provide low impedance alternatives for microelectrodes	PLoS ONE 17, e0270164 (2022)	Li, Y., Wang, T., Camps-Arbestain, M. & Whitby C. P.	The regulators of soil organic carbon mineralization upon lime and/or phosphate addition vary with depth	Science of the Total Environment 828 , 154378 (2022)
Nawaz, T., Williams, G. V. M., Coles, M. P., Edgar, A. & Chong, S. V.	Synthesis of orientated Ni0.89Fe0.11/polymer nanofibres with a bimodal nanoparticle size	Materials Today Communications 30 , 103120 (2022)	Brett, M. W., Gordon, C. K., Hardy, J. & Davis, N. J. L. K.	The Rise and Future of Discrete Organic– Inorganic Hybrid Nanomaterials	ACS Physical Chemistry Au 2, 364-387 (2022)
Pen V Jin H Ma X Ju V Shen 7 Deng	distribution by electrospinning and thermal processing	Chemical Engineering Journal 455, 140705	Soman, A. A., Wimbush, S. C. , Rupich, M. W., Notthoff, C., Kluth, P., Knibbe, R., Li, M. & Strickland, N. M.	The Role of Stacking Faults in the Enhancement of the a-b Plane Peak in Silver Ion-Irradiated Commercial MOD REBCO Wires	IEEE Transactions on Applied Superconductivity 32 (2022)
a, Waterhouse, G. I. N. , Guan, S., Huang, Y. & Qu, X.	time window of ischemic stroke treatment through microcirculatory thrombolysis	(2022)	Murmu, P.P., Kennedy, J. , Liu, Z. & Mori, T.	The role of sulfur valency on thermoelectric properties of sulfur ion implanted copper	Journal of Alloys and Compounds 921 (2022)
rystupa, M., Söhnel, T. & Sperry, J.	Synthesis of the 2,2':3',3'':2'',2''' tetraindole framework of the alkaloid bisindigotin	Tetrahedron Letters 106 , 154082 (2022)		iodide	
Chang, S., Xu, Y., Zhang, W. & Cao, P.	Synthesis, characterization, and photocatalytic performance of Cu/Y co-doped TiO2 nanoparticles	Materials Chemistry and Physics 277 , 125558 (2022)	Love, M. J., Coombes, D., Ismail, S., Billington, C. & Dobson, R. C. J.	FTBEc1 endolysin, LysT84: Defining a new endolysin catalytic subfamily	Biocnemical Journal 479 , 207-223 (2022)
Ballmann, G. M., Evans, M. J., Gentner, T. X., Kennedy, A. R., Fulton, J. R., Coles, M. P. & Mulvey, R. E.	Synthesis, Characterization, and Structural Analysis of AM [Al(NONDipp)(H)(SiH2Ph)] (AM = Li, Na, K, Rb, Cs) Compounds, Made Via	Inorganic Chemistry 61 , 19838–19846 (2022)	Gao, H., Battley, A. & Leitao, E. M.	The ultimate Lewis acid catalyst: using tris(pentafluorophenyl) borane to create bespoke siloxane architectures	Chemical Communications 58 , 7451-7465 (2022)
Mahendra, A., Gupta, P., Granville, S. &	Oxidative Addition of Phenylsilane to Alkali Metal Aluminyls Tailoring of magnetic anisotropy by ion irradiation for magnetic tunnel innation	Journal of Alloys and Compounds 910 , 164902	Li, T., Feng, Q., Wang, T., Miao, Y., Shi, M., Sui, Y., Qi, J., Wei, F., Meng, Q., Pang, L., Ren, Y., Xiao, B., Xue, X., Yin, Q., Sun, Z., Feng, X., Zhang, W. & Cao, B.	Theoretical evaluation and experimental design of nitrogen doped porous carbon from Cu-based metal-organic frameworks for lithium.ion batterice	Surfaces and Interfaces 30 , 101851 (2022)
Jarran M. Sousa-Castillo A. Fan G. Las S.	Sensors	Advanced Functional Materials 22 2202419	Tallon, J.L. & Storey J.G.	Thermodynamics of the pseudogap in	Frontiers in Physics 10 , 1030616 (2022)
Xie, W., Döblinger, M., Auguié, B. & Cortés, E.	Toward Sunlight-Driven H2 Production	(2022)		cuprates	

AUTHORS	TITLE	JOURNAL	AUTHORS	TITLE	JOURNAL
Angeloski, A., Price, J. R., Ennis, C. , Smith, K., McDonagh, A. M., Dowd, A., Thomas, P., Cortie, M., Appadoo, D. & Bhadbhade, M.	Thermosalience Revealed on the Atomic Scale: Rapid Synchrotron Techniques Uncover Molecular Motion Preceding Crystal Jumping	Crystal Growth and Design 22 , 1951-1959 (2022)	Mo, J., Chen, X., Li, M., Liu, W., Zhao, W., Lim, L.Y., Tilley, R.D. , Gooding, J.J. & Li, Q.	Upconversion Nanoparticle-Based Cell Membrane-Coated cRGD Peptide Bioorthogonally Labeled Nanoplatform for Glioblastoma Treatment	ACS Applied Materials & Interfaces (2022)
Geng, J., Brooks, J. M., Bumby, C. W. & Badcock, R. A.	Time-varying magnetic field induced electric field across a current-transporting type-II superconducting loop: Beyond dynamic resistance effect	Superconductor Science and Technology 35 , 25018 (2022)	Plank, M. J., Hendy, S. C. , Binny, R. N., Vattiato, G., Lustig, A. & Maclaren, O. J.	Using mechanistic model-based inference to understand and project epidemic dynamics with time-varying contact and vaccination rates	Scientific Reports 12 , 20451 (2022)
Holmes-Hewett, W. F., Buckley, R. G. , Butler, T. J., Pot, C., Van Koughnet, K., Ruck, B. J. & Trodahl, H. J.	$TO(\Gamma)$ mode resonances in the rare-earth nitrides	AIP Advances 12 , 75120 (2022)	Wimbush, S. C. & Strickland, N. M.	Utilising angle-dependent critical current data in the electromagnetic modelling of HTS coils	Superconductor Science and Technology 35 , 24004 (2022)
Luong, T. M., Pilkington, L. I. & Barker, D.	Total Asymmetric Synthesis and Stereochemical Confirmation of (+)- and (-)-Lyoniresinol and Its Deuterated Analogues	Journal of Organic Chemistry 87 , 4254-4262 (2022)	Schuyt, J. J., Williams, G. V. M. , Shinohara, K., Shimizu, T., Yamanoi, K. & Cadatal-Raduban, M.	Vacuum ultraviolet photoluminescence of NaMgF3:Sm and NaMgF3:Sm,Ce: Energy levels of the lanthanides in NaMgF3:Ln compounds	Methods and Applications in Fluorescence 10 , 35006 (2022)
Shepperson, O. A., Hanna, C. C., Brimble, M. A., Harris, P. W. R. & Cameron, A. J.	Total Synthesis of Novel Antimicrobial β-Hairpin Capitellacin Via Rapid Flow-Based SPPS Assembly and Regioselective On-Resin	International Journal of Peptide Research and Therapeutics 28 , 32 (2022)	Wang, Y., Shi, R., Shang, L., Peng, L., Chu, D., Han, Z., Waterhouse, G. I. N. , Zhang, R. & Zhang, T.	Vertical graphene array for efficient electrocatalytic reduction of oxygen to hydrogen peroxide	Nano Energy 96 , 107046 (2022)
Lamba, S., Kihara, S., Chan, E. W. C., McGillivray, D., Waterhouse, G. I. N., Travas-	Toward cheaper light harvesting systems: Using earth-abundant metal oxide	Journal of Peptide Science 28 , e3413 (2022)	Lee, K. L., Aitken, J. F., Li, X., Montgomery, K., Hsu, HL., Williams, G. M., Brimble, M. A. & Cooper, G. J. S.	Vesiculin derived from IGF-II drives increased islet cell mass in a mouse model of pre- diabetes	Islets 14 , 14-22 (2022)
Grant, T. M., Rennison, D., Cervin, G., Pavia, H.,	porphyrin nanofibers Towards eco-friendly marine antifouling	Science of the Total Environment 812 , 152487	Ennis, C. , Appadoo, D. R. T., Boer, S. A. & White, N. G.	Vibrational mode analysis of hydrogen- bonded organic frameworks (HOFs): synchrotron infrared studies	Physical Chemistry Chemical Physics 24 , 10784–10797 (2022)
Hellio, C., Foulon, V., Brimble, M. A. , Cahill, P. & Svenson, J.	biocides – Nature inspired tetrasubstituted 2,5-diketopiperazines	(2022)	Chalard, A. E., Dixon, A. W., Taberner, A. J. & Malmström, J.	Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models	Frontiers in Cell and Developmental Biology 10 , 946754 (2022)
M. P.	THE within a Lithium Hydrido Aluminate	ACS Organic & Inorganic Au 2 511–524 (2022)	Zhang, Y., Dubuis, G., Butler, T., Kaltenberg, S., Trawick E & Granville S	Voltage-Controlled Switching of Magnetic	Physical Review Applied 17, 34006 (2022)
T. & Hartinger, C. G.	Functionalized N-Heterocyclic Carbene Complexes: Impact of the Pendant N-Donor Ligand on Intramolecular C-C Bond	1100 Organic a Inorganic Ina 2 , 011 024 (2022)	Broom, M. & Willmott, G. R.	Water drop impacts on regular micropillar arrays: The impact region	Physics of Fluids 34 , 17115 (2022)
Ebling, U., Zuelicke, U. & Brand, J.	Formation Triplet character of 2D-fermion dimers arising from s-wave attraction via spin-orbit coupling and Zeeman eplitting	SciPost Physics 12 , 167 (2022)	Boer, S. A., Conte, L., Tarzia, A., Huxley, M. T., Gardiner, M. G., Appadoo, D. R. T., Ennis, C. , Doonan, C. J., Richardson, C. & White, N. G.	Water Sorption Controls Extreme Single- Crystal-to-Single-Crystal Molecular Reorganization in Hydrogen Bonded Organic Frameworks	Chemistry - A European Journal 28 , e202201929 (2022)
Bi, Z., Naveed, H. B., Wu, H., Zhang, C., Zhou, X., Wang, J., Wang, M., Wu, X., Zhu, Q., Zhou,	Tuning Acceptor Composition in Ternary Organic Photovoltaics–Impact of Domain	Advanced Energy Materials 12 , 2103735 (2022)	Jena, K.D., Song, X., Lim, K.,Xu, Y., Li, L. & Cao, P.	Wet-chemical synthesis of spinel Li4Ti5O12 as a negative electrode	Emergent Materials (2022)
K., Chen, K. , Wang, C., Tang, Z. & Ma, W. Cornelio, J. & Telfer, S. G.	Purity on Non-Radiative Voltage Losses Tuning the Stereoselectivity of an	Chemistry - An Asian Journal 17 , e202200243	Sefidan, A. M., Sellier, M., Hewett, J. N., Abdollahi, A., Willmott, G. R. & Becker, S. M.	Wet-core temperature and concentration profiles in a single skim milk droplet drying process	<i>Applied Thermal Engineering</i> 212 , 118571 (2022)
	Modifying a Metal-Organic Framework Catalyst	(2022)	Heenan, A. R., Hamonnet, J. & Marshall, A. T.	Why Careful iR Compensation and Reporting of Electrode Potentials Are Critical for the CO2Peduction Peaction	ACS Energy Letters 7, 2357-2361 (2022)
Martinez-Calderon, M., Haase, T. A., Novikova, N. I., Wells, F. S., Low, J., Willmott, G. R., Broderick, N. G. R. & Aguergaray, C.	Turning industrial paints superhydrophobic via femtosecond laser surface hierarchical structuring	Progress in Organic Coatings 163 , 106625 (2022)	Yousuf, M. U., Al-Bahadly, I. & Avci, E.	Wind speed prediction for small sample dataset using hybrid first-order accumulated	Energy Science and Engineering 10 , 726-739 (2022)
Zhang, Y. & Granville, S.	Two-channel anomalous Hall effect originating from the intermixing in Mn2 CoAl/ Pd thin films	Physical Review B 106 , 144414 (2022)	Rouldi N. Mannini M. Retegan M. Miller R.	generating operation-based double exponential smoothing model XAS and XMCD Reveal a Cobalt(II) Imide	Journal of Physical Chemistry C 126 5784-5792
Zhu, B., Kerr-Philips, T., Ghaus, Z. A., Chan, E. W. C., Barker, D. , Evans, C. W., Williams, D. E. & Travas-Sejdic, J.	Ultra-Highly Sensitive DNA Detection with Conducting Polymer-Modified Electrodes: Mechanism, Manufacture and Prospects for Rapid e-PCR	Journal of the Electrochemical Society 169 , 37521 (2022)	G., Cahier, B., Sainctavit, P., Guihéry, N., Mallah, T., Cabaret, D., Gouéré, D., Baudelet, F., Nataf, L., Wilhelm, F., Guillou, F., Rogalev, A., Suaud, N., Brooker, S. & Juhin, A.	Undergoes High-Pressure-Induced Spin Crossover	(2022)
Yang, T., Ma, Z., Huang, S., Zhang, T., Zhao, K., Yin, L., Gu, Q. & Cao, P.	Ultra-narrow-band blue-emitting K2SrBa(PO4)2:Eu2+ phosphor with superior efficiency and thermal stability	Journal of Alloys and Compounds 892 , 162066 (2022)	Westberry, B. P., Mansel, B. W., Ryan, T. M., Lundin, L. & Williams, M. A. K.	X-ray scattering and molecular dynamics simulations reveal the secondary structure of κ -carrageenan in the solution state	Carbohydrate Polymers 296 , 119958 (2022)
Wang, X., Chen, C., Waterhouse, G. I. N. , Qiao, X. & Xu, Z.	Ultra-sensitive detection of streptomycin in foods using a novel SERS switch sensor fabricated by AuNRs array and DNA hydrogel embedded with DNAzyme	Food Chemistry 393 , 133413 (2022)	Munro, B. C., Hall, S. B. & Whitby, C. P.	Yielding to stress in Pickering emulsions at dilute and intermediate volume fractions	Colloids and Surfaces A: Physicochemical and Engineering Aspects 637 , 128237 (2022)
Brar, N. K., Grigsby, W. J., Hill, S. J., Raymond, L. & Weber, C. C.	Understanding the effects of ionic liquids and antisolvent addition on the extraction and recovery of Pinus radiata bark components	Journal of Wood Chemistry and Technology 42 , 305-317 (2022)			
Sester, C., McCone, J. A. J., Sen, A., Vorster, J., Harvey, J. E. & Hodgkiss, J. M.	Unraveling the binding mode of a methamphetamine aptamer: A spectroscopic and calorimetric study	Biophysical Journal 121 , 2193-2205 (2022)			
	· · · · · · · · · · · · · · · · · · ·				

Books

AUTHORS	BOOK TITLE	PUBLISHER
Sneyd, J., Fewster, R. M., & McGillivray, D.	Mathematics and Statistics for Science	Springer International Publishing

Book chapters

AUTHORS	CHAPTER TITLE	BOOK TITLE	PUBLISHER
Patel, S.D. & Weber, C. C.	5 Alternative solvents and the UN sustainable development goals	Green Chemistry	De Gruyter
Barker, D. & Pilkington, L.	Bicyclic 5-6 Systems: Five Heteroatoms 2:3 or 3:2	Comprehensive Heterocyclic Chemistry IV	Elsevier
Gaston, N.	Gallenene	Xenes: 2D Synthetic Materials Beyond Graphene	Elsevier
Haber-Pohlmeier, S., Galvosas, P. , Wang, J. & Pohlmeier, A.	NMR Imaging of Slow Flows in the Root–Soil Compartment	Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science, and Energy Research	Wiley
Healy, C., Kruger, P. E. , & Telfer, S. G.	Photochemistry of Metal-Organic Frameworks	Springer Handbooks	Springer Science and Business Media Deutschland GmbH

Conference papers

UTHORS	TITLE OF CONFERENCE PAPER	TITLE OF PROCEEDINGS
obinson, D., Chen, Q., Xue, B., Killeen, D., Cordon, K.C., & Zhang, M.	A New Genetic Algorithm for Automated Spectral Pre-processing in Nutrient Assessment	Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2022)
ndrew, PK., Raudsepp, A., Nock, V. , Fan, D., Villiams, M. A. K. , Staufer, U., & Avci, E.	Developing an Optical Microlever for Stable and Unsupported Force Amplification	Proceedings of MARSS 2022 - 5th International Conference on Manipulation, Automation, and Robotics at Small Scales
mith, C., Shepherd, J. , Renaud, G., & van Vijk, K.	Experimental demonstration of quantitative photoacoustic velocimetry with multi-angle observations	Proc.SPIE (2022)
Aeffan, R. C., Mak, D., Menges, J., Dolamore, ., Fee, C., Dobson, R. C. J. , & Nock, V.	Field Effect Transistor-Like Control of Capillaric Flow Using Off-Valves	IEEE Symposium on Mass Storage Systems and Technologies (2022)
Cemp A., Lofroth M., Barnes V., Pita A., Iayman D.T.S., & Avci E.	Isolation of Parasites by Micropipette Aspiration	IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM (2022)
llen, M.C., Lookmire, S., & Avci E.	Manufacturing Microfluidic Chips: Micro Milling Approach	Proceedings of MARSS 2022 - 5th International Conference on Manipulation, Automation, and Robotics at Small Scales
arkar, D., Sun, Y., Tayagui, A., Adams, R., arrill, A., & Nock, V.	Microfluidic Platform to Study Electric Field Based Root Targeting by Pathogenic Zoospores	IEEE Symposium on Mass Storage Systems and Technologies (2022)
an Breugel, S.J., Quinn, L., Holtkamp, I., Araquel-Lacamiento, A., Amirapu, ., Srinivasa, K.K., Low, I., Christie, M.L., lieuwoudt M.K. , Pokorny, M.R., Nagarajan, ., Simpson, M.C., Zargar-Shoshtari, K., & guergaray, C.	Needle probe for accurate prostate cancer diagnosis - Results on fresh biopsy cores	2022 Conference on Lasers and Electro-Optics, CLEO 2022 - Proceedings
an Breugel, S.J., Quinn, L., Holtkamp, I., Araquel-Lacamiento, A., Amirapu, ., Srinivasa, K.K., Low, I., Christie, M.L., f ieuwoudt M.K. , Nagarajan, R., Simpson, 4.C., Zargar-Shoshtari, K., & Aguergaray, C.	Needle probe for accurate prostate cancer diagnosis - Results on fresh biopsy cores	Optics InfoBase Conference Papers (2022)
llan, C., Tayagui, A., Nock, V. , & Meisrimler, N.	Novel Bi-Directional Dual-Flow-Rootchip to Study Effects of Osmotic Stress on Calcium Signalling in Arabidopsis Roots	IEEE Symposium on Mass Storage Systems and Technologies (2022)
furugathas, T., Veena, R., Plank, N.O.V. , Leerththinaathan, P., Petra, I., & Mohandas, P.	Prediction of Electronic parameters of Carbon Nanotube random network Field-effect Transistors under liquid gated conditions using a machine learning approach	2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience and Nanotechnology, 5NANO 2022
mith, C., Shepherd, J. , Renaud, G., & van Vijk, K.	Quantitative photoacoustic velocimetry technique using multi-angle observations	2022 Conference on Lasers and Electro-Optics, CLEO 2022 - Proceedings
mith, C., Shepherd, J. , Renaud, G., & van Vijk, K.	Quantitative photoacoustic velocimetry technique using multi-angle observations	Optics InfoBase Conference Papers (2022)
an Breugel, S.J., Quinn, L., Holtkamp, I., Araquel-Lacamiento, A., Amirapu, ., Srinivasa, K.K., Low, I., Christie, M.L., fieuwoudt M.K., Pokorny, M.R., Nagarajan, ., Simpson, M.C., Zargar-Shoshtari, K., & guergaray, C.	Raman needle for rapid prostate cancer diagnosis: clinical trial results on fresh cores	Optics InfoBase Conference Papers (2022)
mith, C., Shepherd, J. , van Wijk, K. & enaud, G.	Towards photoacoustic flow quantification of blood within bone models	IONS KOALA (2022)
hang, P., Athavale, O.N., Cowan, R.A.L., Clark, M.R., Avci, R., Cheng, L.K., Travas-Sejdic J. , Du P.	Wet-printing of PEDOT:PSS Microelectrodes for Gastric Slow Wave Recording	Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2022)

Keynote and invited speaker addresses

NAME	DETAILS
Sally Brooker	Keynote speaker at the 8th Asian Conference on Coordination Chemistry, Taipei, Taiwan, 7-11 August 2022. "Tuneable ligand field leads to correlations with spin crossover T1/2 and redox potential Epa in Fe(II) helicates"
	Plenary speaker at the 2nd Asian Conference on Molecular Magnetism, Bhopal, India, 6-10 December 2022. "Spin crossover: towards predictable tuning of switching temperatures in advance of synthesis and dual-functionality"
Simon Brown	2nd International Workshop Neurotronics: Bio-inspired information pathways, Kiel, Germany, 5-8 September 2022. "Criticality in Percolating Networks of Nanoparticles"
	International School of Solid State Physics: Unconventional Computing: Materials Science, Informatics, Hardware, Software, Erice, Italy, 20-26 October 2022. "Criticality in Percolating Networks of Nanoparticles: Towards brain-like computation" and "Reservoir Computing with Networks of Nanoparticles and Nanowires"
Peng Cao	International Symposium on the Frontiers of Metallic Structural Materials, Shenyang China, 7 December 2022. "Development of high-performance titanium injection moulding"
Nathaniel Davis	Australian Research Council Centre for Excellence in Exciton Science Annual Workshop, Lorne, Australia, 21-25 November 2022. "Pushing the limits on renewable energy technology through hybrid organic/inorganic nanomaterials"
Laura Domigan	Chemeca, Melbourne, Australia, 25-27 September 2022. "Recipes for cultivated meat"
Robin Fulton	16th International Symposium on Inorganic Ring Systems, Graz, Austria, 24-29 July 2022. "The influence of the ring on the chemistry of germanimine complexes"
Patricia Hunt	Plenary speaker at the 27th Thermodynamics Conference, University of Bath, UK, 7-9 September 2022. "Describing ionic systems, how important are partial charges, charge transfer and polarisability?"
John Kennedy	International Conference on Advanced Nanomaterials & Application, VIT-AP University, India, 16-18 November 2022. "Ion Beam Engineering of Piezoelectric and Electrocatalytic Materials"
	International Conference for Emerging Materials for Technological Applications, Visakhapatnam, India, 23-25 November 2022. "Ion beam engineering of advanced materials for energy applications"
	16th Global Congress on Manufacturing and Management GCMM 2022, Auckland, New Zealand, 5-7 December 2022. "Aotearoa: Green Hydrogen Technology Platform"
Jadranka Travas- Sejdic	International Nanomedicine Conference, Sydney, Australia, 22-24 June 2022. "Conductive Polymers Biointerfaces for Bioelectronics & Controlled Capture-Release"
	New Zealand Medical Sciences Congress, Queenstown, New Zealand, 30 August – 1 September 2022. "Applications of Conductive Polymers Biointerfaces"
	New Zealand Institute of Chemistry (NZIC) Conference, Auckland, New Zealand, 21-24 November 2022. "Biomimetic conductive polymers for stretchable electronics and capture -release of biological entities"
	The 17th Pacific Polymer Congress (PPC17), Brisbane, Australia, 28 November – 2 December 2022. "Novel conducting polymers biointerfaces for bioelectronics"

Te Mana Tangata Whakawhanake **MacDiarmid Institute** Advanced Materials & Nanotechnology

macdiarmid.ac.nz